Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
<tr>
<td>Foreword</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Towards contributive development of services</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Exploration with Service Science</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Service Science approach</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Services as engines for innovation</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Triple push</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Collaborative development supporting innovation</td>
<td>10</td>
</tr>
<tr>
<td>1.7 Towards contributory development of services</td>
<td>12</td>
</tr>
<tr>
<td>1.8 Tiers-Lieu of general interest for creating services as common goods</td>
<td>15</td>
</tr>
<tr>
<td>1.9 Conclusion</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>2 The importance of ITS in urban movement</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Traffic management and urban logistics</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Existing technologies</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 Traffic signals</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2 Satellite tracking</td>
<td>25</td>
</tr>
<tr>
<td>2.2.3 Probe vehicles</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4 Cellular data</td>
<td>26</td>
</tr>
<tr>
<td>2.2.5 Automatic number plate recognition</td>
<td>26</td>
</tr>
<tr>
<td>2.2.6 CCTV</td>
<td>27</td>
</tr>
<tr>
<td>2.2.7 Vehicle detection systems</td>
<td>27</td>
</tr>
<tr>
<td>2.2.8 Pollution monitors</td>
<td>27</td>
</tr>
<tr>
<td>2.2.9 Variable message signs</td>
<td>27</td>
</tr>
<tr>
<td>2.2.10 Road user charging</td>
<td>28</td>
</tr>
<tr>
<td>2.3 Evolving technologies</td>
<td>29</td>
</tr>
<tr>
<td>2.4 Key factors for success</td>
<td>30</td>
</tr>
<tr>
<td>2.4.1 Cooperation, partnership and interoperability</td>
<td>30</td>
</tr>
<tr>
<td>2.4.2 Targeting individuals – optimising network performance</td>
<td>30</td>
</tr>
<tr>
<td>2.4.3 Maximising ITS potential/minimising human intervention at operational level</td>
<td>31</td>
</tr>
<tr>
<td>2.5 The importance of freight in urban areas</td>
<td>33</td>
</tr>
</tbody>
</table>
2.6 ITS traffic management links with sustainable transport modes 33
2.7 London – Case studies for its traffic management 33
 2.7.1 Background 33
2.8 Case study 1 – Central London Congestion Charging scheme 36
2.9 Case study 2 – 2012 Olympic legacy 41
 2.9.1 Managing large groups of public transport users 41
 2.9.2 Managing road-based traffic 42
 2.9.3 Managing pedestrian flows 43
 2.9.4 Managing freight 45
Bibliography 47

3 ICT for intelligent public transport systems, state of knowledge and future trends 49
 3.1 General introduction 49
 3.2 Wireless systems for public transport applications 50
 3.2.1 Introduction 50
 3.2.2 Communication applications in public transport 50
 3.2.3 The main deployed technologies 52
 3.2.4 Intra-vehicle communications and between interconnected vehicles 56
 3.2.5 Middleware for communication system in the transportation field 58
 3.2.6 Internet of Things and wireless sensor networks 62
 3.3 Localization for public transport systems 63
 3.3.1 Introduction 63
 3.3.2 The basics of Global Navigation Satellite Systems (GNSS) 64
 3.3.3 Public transport experiences 64
 3.3.4 Challenges 67
 3.3.5 Conclusion 68
 3.4 Specific context of EM and propagation environments for railways and public transports 68
 3.5 General conclusion 69
References 70

4 ITS and freight transport: stakes and perspectives 75
 4.1 Introduction 75
 4.2 The role of ICT in extending the supply of transport services 76
 4.2.1 Prior to transport: ICT, optimisation of logistics and optimisation of the transport organisation 77
 4.2.2 ITS and transport and route optimisation 78
 4.2.3 ITS and the optimisation of city logistics 80
 4.2.4 ITS and the reduction of energy consumption and emissions 81
 4.3 What conclusion can we reach regarding the impact of ICT on transport services? 81
 4.3.1 The diversity of shippers’ logistical needs 82
4.3.2 Innovations that must take account of the possibilities of adoption by the social system of transport 86
4.3.3 Technological innovations which must be associated with innovations of other types 86
4.4 Conclusion: the implementation conditions for innovation 87
Bibliography 88

5 Energy-efficient and real-time databases management techniques for wireless sensor networks 91
5.1 Introduction 91
5.2 WSN-based applications 93
 5.2.1 Military applications 93
 5.2.2 Monitoring applications 94
 5.2.3 Environmental applications 94
 5.2.4 Urban and home automation applications 94
 5.2.5 Medical applications 95
 5.2.6 Commercial applications 95
5.3 Energy-efficient and real-time databases techniques requirements 95
 5.3.1 Energy-efficient databases management techniques 96
 5.3.2 Real-time databases management techniques 103
5.4 Discussion and open issues 106
5.5 Conclusion 107
Acknowledgements 107
References 107

6 Proactive safety – cooperative collision warning for vehicles 117
6.1 General description 117
6.2 Main factors of CCW 118
 6.2.1 Positioning 118
 6.2.2 Vehicular communication 118
 6.2.3 Collision prediction 118
6.3 CCW challenges 119
 6.3.1 Unnecessary calculation 119
 6.3.2 Vehicle’s motion state changing 120
 6.3.3 Positioning error 120
 6.3.4 Different types of vehicles 121
6.4 Communication techniques for cooperative safety 121
6.5 CCW techniques 122
 6.5.1 Unsignalized intersection 122
 6.5.2 Acceleration and turning 123
6.6 Our VCCW algorithm 123
 6.6.1 Architecture 124
 6.6.2 Information exchanging 124
 6.6.3 The collision calculation 125
 6.6.4 Judgment rule and alerting 129
6.7 CCW systems 129
11 Integrated visual information for maritime surveillance 237
11.1 Introduction 237
11.2 Related work 238
 11.2.1 Systems using radars 240
 11.2.2 Satellite-based systems 240
 11.2.3 Systems using sonars 240
 11.2.4 Camera-based systems 241
 11.2.5 Discussion 241
11.3 Architecture of the framework 242
 11.3.1 Visual detection 243
 11.3.2 Visual tracking 248
 11.3.3 VTS system 249
 11.3.4 Data fusion 249
 11.3.5 Object recognition 251
11.4 Experimental results 255
 11.4.1 MarDT data 255
 11.4.2 VOC data 256
 11.4.3 Computational speed 256
 11.4.4 Discussion 256
11.5 Enhancing air traffic control with visual data 257
 11.5.1 A framework for ground traffic surveillance in airports 259
 11.5.2 Aircraft detection 259
11.6 Summary and conclusions 260
References 261

12 AIS signal radiolocation, tracking and verification 265
12.1 Introduction 265
12.2 Operational infrastructure and data collection 268
12.3 ToA and TDoA measurements 271
12.4 TDoA-based vessel localisation 273
12.5 Vessel tracking using an Extended Kalman Filter 277
12.6 Pre-operational results: initial processing and multilateration 280
12.7 Pre-operational results: anomaly detection 286
 12.7.1 Anomaly detection with three or more TDoAs 286
 12.7.2 Anomaly detection with one TDoA 288
 12.7.3 Binomial thresholding 288
12.8 Conclusions 291
References 292

13 The impact of Satellite AIS to the environmental challenges of modern shipping 295
13.1 Background into AIS 295
13.2 AIS and how it works 296
13.3 The importance of first pass detection 297
 13.3.1 On-board processing (OBP) 299
 13.3.2 Spectrum de-collision processing (SDP) 299
13.4 Comparison of varying methods of Satellite AIS reception techniques: OBP and SDP 299
13.5 The challenges to environmental protection 300
13.6 Satellite AIS for environmental protection 301
13.7 Illegal ballast water exchange 303
13.8 Oil spill identification 303
13.9 Tracking illegal fishing 303
13.10 Monitoring ship emissions 305
13.11 Satellite AIS for environmental planning 306
13.12 Conclusion 309

14 How ‘green’ is e-Navigation? 311
14.1 The challenge – ‘What do you mean by “protection of the environment”, specifically?’ 311
14.2 Sustainability in maritime transportation – the larger context 312
14.3 The ‘message’ of Marine Spatial Planning – a reflection on the values involved 314
14.4 Investigating the IMO e-Navigation strategy for its ‘greeness’ 315
14.5 Concluding postulates 318
Disclaimer 319
Abbreviations used and glossary of terms 319
References 320

15 Optimal ship operation: monitoring technology of ship overall heat balance 321
15.1 Introduction 321
15.1.1 IMO MEPC Circ. 684 321
15.1.2 Objectives of these guidelines 322
15.1.3 Definition 322
15.1.4 Establishing an EEOI 324
15.1.5 General data recording and documentation procedures 324
15.1.6 Monitoring and verification 325
15.1.7 Use of guidelines 325
15.1.8 Calculation of EEOI based on operational data 326
15.2 Present heat balance of marine diesel engine 328
15.2.1 Wärtsilä waste heat recovery (WHR) 328
15.2.2 Waste Heat Recovery System (WHRS) of MAN B&W 332
15.3 Monitoring system for ship’s heat balance 342
Abbreviations 347
References 347

16 Regulation of ship-source pollution through international convention regimes 349
16.1 Introduction 349
16.2 Theoretical underpinnings 350
16.2.1 Legal framework: the marine pollution spectrum 350
16.2.2 Functional approach in regulatory law 352
16.2.3 Concept of regulatory law 353

16.3 Regulatory ship-source pollution conventions 354
16.3.1 MARPOL Convention 354
16.3.2 Oil Pollution Preparedness and Response Convention (OPRC) 363
16.3.3 Dumping of wastes 364
16.3.4 Basel Convention 365
16.3.5 Ship Recycling Convention 367
16.3.6 Ballast Water Management Convention (BWM) 368
16.3.7 Anti-fouling Systems 369
16.3.8 Nairobi Convention on Wreck Removal 370

16.4 Sanctions and the penal law dimension 372
16.5 Summary and conclusion 373

Acknowledgements 374
Acronyms 374
Endnotes and references 374

17 Foresight application for transport sector 377
17.1 Introduction 377
17.2 The essence of foresight 378
17.3 Types of foresight initiatives 383
17.4 Examples and good practice of foresight application in the transport sector 386
17.4.1 Corporate foresight in mobility, transport and logistics 387
17.4.2 Sectoral foresight in mobility, transport and logistics 389
17.5 Benefits from using foresight approach 392
17.6 Summary 396
Abbreviations 397
References 397

18 Aeronautical air-ground data communications: current and future trends 401
18.1 Aeronautical air-ground data communications 401
18.1.1 Overview 401
18.1.2 Current communication systems 404
18.2 Future trends 406
18.2.1 Aeronautical ad hoc network 407
18.2.2 Shifting the communication paradigm in AANET 412
References 416

Contributor biographies 419
Index 429