Contents

1	Тор	ology	control for building scalable energy-efficient	
	Inte	ernet o	of Things	1
	Jun Huang, Qiang Duan and Cong-cong Xing			
	Abs	Abstract		
	1.1	Intro	duction	1
	1.2	Over	view of TC in IoT	3
	1.3	A fra	mework of topology construction for scalable energy-efficient	
		IoT		4
	1.4	Mode	eling topology construction for scalable energy-efficient IoT	6
			logy construction algorithm for scalable energy-efficient IoT	9
	1.6	Perfo	rmance evaluation	10
	1.7	Conc	lusions	16
	Ref	erence	S	16
2	Wireless sensor network operating systems: a survey			19
	Haiying Zhou, Xing Liu, Shen Lin, Jian Li,			
	Shengwu Xiong and Kun-Mean Hou			
	Abs	tract		19
	2.1	Intro	duction	19
	2.2	OS at	rchitecture	20
		2.2.1	Monolithic architecture	21
		2.2.2	Modular architecture	21
		2.2.3	VM architecture	22
		2.2.4	Discussion	22
	2.3		cheduling model	23
		2.3.1	Event-driven scheduling and preemptive	
			multithreading	23
		2.3.2	Cooperative multithreading	23
		2.3.3	Hybrid scheduling	24
		2.3.4	Implementation of different scheduling models	25
		2.3.5	Discussion	26
	2.4	Mem	ory management	26
			Basic dynamic allocation mechanisms in the WSN	26
		2.4.2	Coalescence-deferred SF allocation	27
			Defragmented SF allocation	28
		2.4.4	Virtual memory mechanism	28

	2.5	Application programming model	29
		2.5.1 Event-based programming	29
		2.5.2 Thread-based programming	29
		2.5.3 Thread-based programming in the event-driven OSes	29
	2.6	Application reprogramming	30
		2.6.1 Optimization to the reprogramming code size	30
		2.6.2 Code dissemination protocol	30
	2.7	Energy conservation	31
		2.7.1 Energy conservation in the sensing subsystem	31
		2.7.2 Energy conservation in the signal processing subsystem	31
		2.7.3 Energy conservation in the communication subsystem	32
	2.8	Real-time performance	32
	2.9	Fault-tolerant mechanisms	33
	2.10) Feature comparison and ongoing research challenges	33
		2.10.1 Feature comparison of different WSN OSes	33
		2.10.2 Research challenges of the WSN OSes	35
	Ack	nowledgments	35
		erences	36
3		eless sensor network operating system: concept,	43
	new design, and implementation		
	· · · ·	g Liu, Haiying Zhou, Shen Lin, Shengwu Xiong,	
		Li and Kun-Mean Hou	42
		tract	43
		Introduction	44
	3.2	LiveOS memory-efficient real-time scheduling	45
		3.2.1 Hybrid scheduling	46
		3.2.2 Shared-stack multithreading	47
		3.2.3 Performance evaluation	48
		3.2.4 Discussion	51
	3.3	LiveOS reactive-defragmentation dynamic memory allocation	51
		3.3.1 LiveOS reactive-defragmentation allocation mechanism	52
		3.3.2 Performance evaluation	52
		3.3.3 Discussion	53
	3.4	LiveOS middleware for user-friendly application development	
		environment	54
		3.4.1 LiveOS memory-efficient and energy-efficient	
		middleware LiMid	55
		3.4.2 Performance evaluation	57
	3.5	LiveOS multi-core task assignment for the energy conservation	58
		3.5.1 Concept of the LiveOS multi-core energy conservation	
		mechanism	58
	_	3.5.2 Performance evaluation	59
	3.6	LiveOS multi-core task assignment to improve the real-time	
		performance	60

	3.7	LiveOS multi-core technique for the context-aware applications	61
	3.8	LiveOS multi-core fault-tolerant mechanism	63
		3.8.1 Concept and implementation of the LiveOS multi-core	
		fault-tolerant platform	63
		3.8.2 Experimental evaluation	64
	3.9	LiveOS multi-core debugging mechanism	64
		3.9.1 Traditional debugging approaches	65
		3.9.2 Concept and implementation of the LiveOS multi-core	
		debugging approach	65
) Discussion on the LiveOS design concepts	66
		Conclusions and ongoing works	66
		nowledgments	67
	Ref	erences	67
4	OS	IRIS framework: sens <u>O</u> r-ba <u>S</u> ed mon <u>I</u> to <u>RI</u> ng Systems	73
	Rap	hael Guerra and Felipe Santos	
	Abs	tract	73
	4.1	Introduction	73
	4.2	OSIRIS Communication Layer	75
		4.2.1 OMCP Protocol	76
		4.2.2 OSIRIS modules communication	76
		4.2.3 Implementation on RabbitMQ	76
	4.3	OSIRIS modules	78
		4.3.1 Collector	78
		4.3.2 SensorNet	78
		4.3.3 VirtualSensorNet	79
		4.3.4 Function and External	80
		Evaluation	80
		Conclusion	83
	Ref	erences	83
5	Мо	deling and tracing events in RFID-enabled supply chains	85
	Con	rg-cong Xing, Jun Huang and Shui Yu	
	Abs	tract	85
	5.1	Introduction	85
	5.2	Background and related work	86
	5.3	The RFID-enabled supply chain system	87
		5.3.1 System architecture	87
		5.3.2 The discovery service mechanism	89
		5.3.3 Access controls of the secure Data DS	89
	5.4	Modeling of the system	91
		5.4.1 Events	91
		5.4.2 Event dissemination	95

	5.5	Tracing events	95
		5.5.1 The algorithm	95
		5.5.2 Event-tracing examples	97
	5.6	Conclusion	99
	Ref	erences	99
6		ew clone detection approach in RFID-enabled supply chains	103
		g-cong Xing, Jun Huang, Kun Hua, and Song Guo	
		tract	103
		Introduction	103
		A categorical perspective of RFID supply chains	105
	6.3	The clone detection system	108
		6.3.1 v-Value verification sequence	108
		6.3.2 Event track formation	109
		6.3.3 Clone detection rules	109
	<i>с</i> н	6.3.4 Clone detection examples	110
		Evaluation and comparison with peer work	112
		Related work	116
		Final remarks	117
	Ref	erences	118
7		ticipatory sensing network: a paradigm to achieve applications	
	of I	-	121
		Hou, Jingyi Sun and Shaodan Ma	
		tract	121
		Introduction	121
		System model	124
	7.3	Problem formulation	125
		7.3.1 Allocation rule	126
		7.3.2 Payment rule	127
	7.4	7.3.3 Proof of properties	127
	7.4		130
		7.4.1 Simulation setup 7.4.2 Truthfulness	130
			131 131
		7.4.3 Weighted social welfare	131
	75	7.4.4 Average reputation Conclusion and discussion	131
		nowledgements	132
		erences	135
	Kel		155
8		nomics of Internet of Things (IoT): market structure analysis	137
		ng Zhang tract	127
		Introduction	137 137
	0.1		13/

	8.2	Economic models of IoT	139
	8.3	Monopoly market structure analysis of IoT	142
		8.3.1 Monopoly market model	143
		8.3.2 Monopoly market analysis	143
	8.4	Oligopoly market structure analysis of IoT	145
		8.4.1 Oligopoly market model	146
		8.4.2 Oligopoly market analysis	146
	8.5	Conclusions	150
	App	endix A	151
	Ref	prences	154
9		and big data: application for urban planning and building	
		rt cities	155
		har Rathore, Anand Paul and Awais Ahmad	
	Abs		155
		Introduction	156
		Motivation	158
	9.3	Proposed system for urban planning and smart cities	159
		9.3.1 Smart systems deployment and big data generation	159
		9.3.2 IoT-based smart city	161
		9.3.3 IoT-based urban planning	163
	0.4	9.3.4 Proposed system architecture and implementation model	163
	9.4	Urban data analysis and discussion	166
		9.4.1 Vehicular traffic analysis	166
		9.4.2 Smart parking data analysis	171
		9.4.3 Smart home data analysis	172
		9.4.4 Flood data analysis	174
	9.5	9.4.5 Environmental data analysis	175 177
	9.5	System implementation abstraction9.5.1Smart city system implementation abstraction	177
		9.5.2 Urban planning system implementation abstraction	177
	0.6	System real implementation and evaluation	178
		Conclusion and future work	180
		erences	180
10	He	althcare Internet of Things: fundamental technologies, state-of-	
10		-art standards, and current practices	185
		n Diaz and Wei Wang	
		tract	185
		I Introduction	185
		2 IoT elements for healthcare	187
		10.2.1 Ambient intelligence (AmI) in general	187
		10.2.2 Service oriented architecture (SOA)	188
		10.2.3 Radio frequency identification (RFID)	188

10.2	2.4 Wireless sensor network (WSN)	189
10.2	2.5 ZigBee	190
10.2	2.6 Bluetooth	191
10.2	2.7 IPv6 and IPv6LoWPAN	191
10.3 IoT	applications in healthcare	192
10.3	3.1 Vital signs	192
10.3	3.2 Smart drug intake	195
10.3	3.3 Elderly care	196
10.3	3.4 Healthcare applications of AmI	198
10.4 Cor	nclusions	200
Reference	200	

Index

205