Contents

1 Topology control for building scalable energy-efficient Internet of Things

Jun Huang, Qiang Duan and Cong-cong Xing

Abstract 1

1.1 Introduction 1

1.2 Overview of TC in IoT 3

1.3 A framework of topology construction for scalable energy-efficient IoT 4

1.4 Modeling topology construction for scalable energy-efficient IoT 6

1.5 Topology construction algorithm for scalable energy-efficient IoT 9

1.6 Performance evaluation 10

1.7 Conclusions 16

References 16

2 Wireless sensor network operating systems: a survey

Haiying Zhou, Xing Liu, Shen Lin, Jian Li, Shengwu Xiong and Kun-Mean Hou

Abstract 19

2.1 Introduction 19

2.2 OS architecture

2.2.1 Monolithic architecture 21

2.2.2 Modular architecture 21

2.2.3 VM architecture 22

2.2.4 Discussion 22

2.3 OS scheduling model

2.3.1 Event-driven scheduling and preemptive multithreading 23

2.3.2 Cooperative multithreading 23

2.3.3 Hybrid scheduling 24

2.3.4 Implementation of different scheduling models 25

2.3.5 Discussion 26

2.4 Memory management 26

2.4.1 Basic dynamic allocation mechanisms in the WSN 26

2.4.2 Coalescence-deferred SF allocation 27

2.4.3 Defragmented SF allocation 28

2.4.4 Virtual memory mechanism 28
Managing the Internet of Things: architectures, theories and applications

2.5 Application programming model 29
 2.5.1 Event-based programming 29
 2.5.2 Thread-based programming 29
 2.5.3 Thread-based programming in the event-driven OSes 29

2.6 Application reprogramming 30
 2.6.1 Optimization to the reprogramming code size 30
 2.6.2 Code dissemination protocol 30

2.7 Energy conservation 31
 2.7.1 Energy conservation in the sensing subsystem 31
 2.7.2 Energy conservation in the signal processing subsystem 31
 2.7.3 Energy conservation in the communication subsystem 32

2.8 Real-time performance 32

2.9 Fault-tolerant mechanisms 33

2.10 Feature comparison and ongoing research challenges 33
 2.10.1 Feature comparison of different WSN OSes 33
 2.10.2 Research challenges of the WSN OSes 35

Acknowledgments 35
References 36

3 Wireless sensor network operating system: concept, new design, and implementation 43
Xing Liu, Haiying Zhou, Shen Lin, Shengwu Xiong, Jian Li and Kun-Mean Hou

Abstract 43

3.1 Introduction 44

3.2 LiveOS memory-efficient real-time scheduling 45
 3.2.1 Hybrid scheduling 46
 3.2.2 Shared-stack multithreading 47
 3.2.3 Performance evaluation 48
 3.2.4 Discussion 51

3.3 LiveOS reactive-defragmentation dynamic memory allocation 51
 3.3.1 LiveOS reactive-defragmentation allocation mechanism 52
 3.3.2 Performance evaluation 52
 3.3.3 Discussion 53

3.4 LiveOS middleware for user-friendly application development environment 54
 3.4.1 LiveOS memory-efficient and energy-efficient middleware LiMid 55
 3.4.2 Performance evaluation 57

3.5 LiveOS multi-core task assignment for the energy conservation 58
 3.5.1 Concept of the LiveOS multi-core energy conservation mechanism 58
 3.5.2 Performance evaluation 59

3.6 LiveOS multi-core task assignment to improve the real-time performance 60
3.7 LiveOS multi-core technique for the context-aware applications 61
3.8 LiveOS multi-core fault-tolerant mechanism 63
 3.8.1 Concept and implementation of the LiveOS multi-core fault-tolerant platform 63
 3.8.2 Experimental evaluation 64
3.9 LiveOS multi-core debugging mechanism 64
 3.9.1 Traditional debugging approaches 65
 3.9.2 Concept and implementation of the LiveOS multi-core debugging approach 65
3.10 Discussion on the LiveOS design concepts 66
3.11 Conclusions and ongoing works 66
Acknowledgments 67
References 67

4 OSIRIS framework: sensOr-baSed monItoRIng Systems 73
Raphael Guerra and Felipe Santos
Abstract 73
4.1 Introduction 73
4.2 OSIRIS Communication Layer 75
 4.2.1 OMCP Protocol 76
 4.2.2 OSIRIS modules communication 76
 4.2.3 Implementation on RabbitMQ 76
4.3 OSIRIS modules 78
 4.3.1 Collector 78
 4.3.2 SensorNet 78
 4.3.3 VirtualSensorNet 79
 4.3.4 Function and External 80
4.4 Evaluation 80
4.5 Conclusion 83
References 83

5 Modeling and tracing events in RFID-enabled supply chains 85
Cong-cong Xing, Jun Huang and Shui Yu
Abstract 85
5.1 Introduction 85
5.2 Background and related work 86
5.3 The RFID-enabled supply chain system 87
 5.3.1 System architecture 87
 5.3.2 The discovery service mechanism 89
 5.3.3 Access controls of the secure Data DS 89
5.4 Modeling of the system 91
 5.4.1 Events 91
 5.4.2 Event dissemination 95