Contents

Preface					
Ac	Acknowledgements				
		contributors	xxiii		
1	Spa	Spatial modulation for cooperative networks			
	1.1	Introduction	1		
	1.2	Protocol I: DSM	5		
		1.2.1 Transmission model	5		
		1.2.2 Demodulation at the destination	9		
		1.2.3 Error probability and diversity order analysis	12		
		1.2.4 Average energy consumption and average rate of DSM	16		
	1.3	Protocol II: DSM-STBC	20		
		1.3.1 Transmission model	20		
		1.3.2 Demodulation at the destination	24		
		1.3.3 Remarks	26		
		Numerical and simulation results	26		
		Conclusion	31		
		nowledgements	32		
	Refe	erences	33		
2	Rela	aying for massive MIMO	33 39		
	2.1	Introduction	39		
		2.1.1 Single-hop massive MIMO systems	42		
		2.1.2 Dual-hop massive MIMO systems	43		
	2.2	System configurations	44		
		2.2.1 Antenna configuration	45		
		2.2.2 Acquisition of channel state information			
		and duplexing modes	46		
		2.2.3 Transmission frame structure	48		
	2.3	Favourable propagation in massive MIMO	50		
		2.3.1 Channel modelling	51 53		
		Channel estimation			
	2.5	Massive MIMO configurations and signal processing aspects	54		
		2.5.1 General end-to-end signal model	54		
		2.5.2 Signal processing aspects	55		
	2.6	Fundamental performance metrics	57		

	2.7	Case study			
		2.7.1	Transmit power scaling at user nodes	59	
		2.7.2	Transmit power scaling at relay nodes	62	
		2.7.3	Transmit power scaling at user and relay nodes	63	
		2.7.4	Numerical results	65	
		2.7.5	System design insights	66	
	2.8	Summ	nary	67	
	Ref	erences	5	67	
3	SUI	DAS: n	nmWave relaying for 5G outdoor-to-indoor		
			cations	71	
			luction	71	
	3.2		ommunication systems	72	
			Massive MIMO	73	
			Small cells and mmWaves	73	
			Combinations of massive MIMO and mmWave	75	
			SUDAS – overview	75	
			SUDAS – working principle	76	
			SUDAS – application scenarios	78	
			Comparisons with VMIMO	80	
	3.3		AC – implementation	81	
			Amplify-and-forward	82	
			Compress-and-forward	83	
	3.4		ematical system model	84	
			SUDAS downlink communication model	84	
			System throughput	86	
	3.5		erical results	87	
			Average system throughput versus transmit power	87	
			Average system throughput versus number of SUDACs	88	
	3.6		AS – challenges	89	
			Keyhole effect	89	
			Carrier aggregation	90	
			Resource allocation for multiple MNOs	90	
			Mobility	91	
			Synchronization and channel estimation	92	
			Power consumption	92	
			lusions	93	
			dgements	93	
	Ref	erences	5	93	
4	Linear processing techniques for multi-antenna relaying systems with interference 9				
	systems with interference				
	4.1		luction	97	
			Interference mitigation in relaying systems	97	
		4.1.2	Interference exploitation for wireless-powered relaying	<i>a</i> -	
			systems	99	
		4.1.3	Organization of the chapter	100	

	4.2	Linear processing techniques	101
		4.2.1 Maximum ratio combining	101
		4.2.2 Zero-forcing	102
		4.2.3 Minimum mean square error	102
	4.3	Linear processing for interference suppression in relaying systems	103
		4.3.1 MRC/MRT scheme	104
		4.3.2 ZF/MRT scheme	106
		4.3.3 MMSE/MRT scheme	108
		4.3.4 Large N analysis	110
		4.3.5 Comparison of the schemes	110
		4.3.6 Numerical results	111
	4.4	Linear processing for interference exploitation in wireless-	
		powered relaying systems	113
		4.4.1 MRC/MRT scheme	115
		4.4.2 ZF/MRT scheme	118
		4.4.3 MMSE/MRT scheme	119
		4.4.4 Numerical results	121
	4.5	Conclusions	121
		4.5.1 Future directions	123
	Ref	erences	124
5	Rel	aying in full-duplex radio communication systems	129
	5.1	Introduction	129
		5.1.1 Duplex modes for relay systems	130
		5.1.2 Loopback self-interference	132
		5.1.3 Organization of the chapter	133
	5.2	System model	134
		5.2.1 End-to-end signal models	135
		5.2.2 Signal-to-interference-and-noise ratios	139
	5.3	Transmit power control in FD relaying	140
		5.3.1 AF relaying	142
		5.3.2 DF relaying	144
		5.3.3 Performance analysis	145
	5.4	FD vs. HD relaying	151
		5.4.1 Analysis of short-term performance	152
		5.4.2 Analysis of long-term performance	162
		Conclusions	170
	Ref	erences	170
6		ay selection in modern communication systems	175
		Introduction	175
	6.2	FD relay selection	175
		6.2.1 System model	176
		6.2.2 Optimal relay selection	177
		6.2.3 Max-min relay selection	178
		6.2.4 Loop interference relay selection	179
		6.2.5 Partial relay selection	179

		6.2.6	Max-min with loop interference relay selection	180		
			Optimal relay selection with hybrid relaying	181		
			Numerical results	182		
	6.3	Buffe	r-aided relay selection	184		
			System model	185		
		6.3.2	Max-min relay selection	187		
		6.3.3	Max-max relay selection (bound)	188		
		6.3.4	Max-link relay selection	188		
		6.3.5	Numerical results	194		
	6.4	Wirel	ess powered relay selection with wireless battery charging	197		
			System model	198		
			Random relay selection	200		
			Relay selection based on the closest distance	201		
		6.4.4	Distributed beamforming	202		
		6.4.5	Numerical results	203		
		Conc		205		
	Refe	erences	3	205		
7	Rela	aying i	n green communication systems	207		
	7.1	Introd	luction	207		
	7.2	Motiv	vation	208		
	7.3	Syste	m model and description	209		
			Basic system model	209		
			Metrics for energy evaluation	210		
		7.3.3	Definition of optimization problems	212		
			Power consumption model	214		
	7.4		parison of EE of relay protocols for three-node scenario	217		
			Relaying protocols	217		
			Optimization and comparison of ECR minimization	219		
			Study of special cases	224		
			Numerical results	227		
			Conclusion	230		
		-	y efficiency analysis of relay cooperation	231 239		
		7.6 Conclusions				
		Acknowledgements				
	Ref	erences	3	239		
8		0.	ficient relaying	243		
	8.1		luction	243		
			Energy efficiency	243		
	o -		Recent results	245		
	8.2		y-efficient relay protocol design	245		
			Power control and relay design in three-way relay channels	246		
	8.3		y-efficient power allocation with AF relaying	249		
			Centralized power allocation	251		
		8.3.2	Distributed power allocation	254		

	8.4	Energy-efficient resource allocation with multiple-antenna	
		AF relaying	256
		8.4.1 Relay interference neutralization	256
		8.4.2 Receive filters allocation	259
		8.4.3 Centralized power allocation	260
		8.4.4 Distributed power allocation	263
	8.5	Multi-stream MIMO AF system	264
	8.6	Numerical results	266
	8.7	Conclusions	270
	Ref	erences	270
9	Cog	nitive relaying for information and energy cooperation	273
	9.1	Introduction	273
		9.1.1 Wireless challenges and motivation	273
		9.1.2 Literature review	274
		9.1.3 Organization of the chapter	277
		Network model	278
	9.3	Information cooperation	280
		9.3.1 Problem formulation	280
		9.3.2 Special structure of relaying matrix and reformulation	280
		9.3.3 An efficient algorithm and distributed implementation	282
	9.4	Information and energy cooperation	288
		9.4.1 System setting	288
		9.4.2 The ideal primary-cognitive cooperation	289
		9.4.3 A practical power-splitting cooperation	291
	9.5	Performance evaluation	294
		9.5.1 Benchmark and proposed schemes	295
		9.5.2 Outage performance due to the information cooperation	295
		9.5.3 Improved rate region	296
		9.5.4 Average SU rate	296
		9.5.5 Outage performance due to the additional energy	
		cooperation	298
		Concluding remarks and future directions	299
		endix A: Proof of Theorem 9.1	299
		endix B: Proof of Proposition 9.1	300
		endix C: Closed-form solution to Problem (9.60)	300
	Ref	erences	302
10		aying in non-ideal conditions	305
		1 Introduction	305
		2 Relaying with feedback delay	305
		3 Relaying with link correlation	311
		4 Relaying with non-Gaussian interference	320
		5 Relaying with wireless power	328
	Ret	Perences	335

11	Rela	ying and physical layer security	339		
	11.1 Introduction				
	11.2	Deaf cooperation in multiple relay networks	342		
		11.2.1 CJ versus NF	343		
		11.2.2 Deaf helpers selection	345		
		11.2.3 Empirical evaluation	348		
	11.3	Deaf cooperation with multiple antennas	349		
		11.3.1 CJ versus NF in multi-antenna deaf cooperation	352		
		11.3.2 The reversely degraded multi-antenna relay–eavesdropper			
		channel	353		
		11.3.3 Empirical evaluation	354		
	11.4	Active cooperation in multiple relay networks	356		
		11.4.1 DF with multiple relays	357		
		11.4.2 Empirical evaluation	362		
		Conclusions	363		
	Refe	rences	364		
12		ying technologies for smart grid	367		
	12.1	Introduction	367		
		12.1.1 PLCs for SGs	368		
		12.1.2 Wireless mesh network for SGs	368		
	10.0	12.1.3 Chapter overview	369		
	12.2	Communication networks for SGs	369		
		12.2.1 An overview of SG communication architecture	369		
		12.2.2 Communication technologies for SGs	370		
		12.2.3 Challenges of communication technologies in SGs	372 374		
	122	12.2.4 Relaying strategies in SG communication networks Relaying technologies for indoor PLC networks	374		
	12.3	12.3.1 Indoor PLC network: example, advantages,	5/4		
		and challenges	374		
		12.3.2 Relaying strategies for indoor PLC networks	376		
		12.3.3 Numerical results and discussions	379		
	12.4	Relaying technologies for SG wireless communications	382		
		12.4.1 Unidirectional two-relay system with collaborative			
		beamforming	384		
		12.4.2 Bidirectional relaying for information-exchange system	386		
		12.4.3 Virtual-MIMO in SG wireless communications	389		
		Conclusions	395		
	Refe	rences	396		
13	Simu	lltaneous wireless information and power transfer in relay			
		ference channels	401		
	13.1	Introduction	401		
	13.2	Preliminaries of SWIPT and game theory	403		
		13.2.1 Basic receiver structures of SWIPT	404		
		13.2.2 Basic concepts of non-cooperative game theory	405		

	13.3	Systen	n model and problem formulation	406
		13.3.1	System model	406
		13.3.2	Problem formulation	409
	13.4	Distrib	puted power splitting via game theory	410
		13.4.1	Non-cooperative game formulation	410
		13.4.2	Existence and uniqueness of the NE	411
		13.4.3	Distributed algorithm	416
	13.5	Numer	rical results	418
		13.5.1	Verification of best response function and algorithm	
			convergence	418
		13.5.2	System average performance and effects of system	
			parameters	420
	13.6	Conclu	isions	424
	Refe	rences		424
14	Rela	ying in	optical wireless communication	429
		Introdu		429
	14.2	The op	otical wireless channel	430
		14.2.1	Fading statistics	431
		14.2.2	÷	432
	14.3	Relayi	ng configurations	433
		14.3.1	Relaying signaling schemes	435
	14.4	Perform	mance of relay-assisted OWC systems	436
		14.4.1	Performance of DF relaying systems	436
		14.4.2	Performance of AF relaying systems	439
		14.4.3	Diversity gain analysis	441
	14.5	Relay-	assisted quantum communication	443
		14.5.1	Relay-assisted QKD	443
		14.5.2	Qubit error rate performance analysis	444
	14.6	Mixed	RF-FSO relay transmission	447
		14.6.1	Subcarrier intensity modulation	449
	14.7	Optica	l orthogonal frequency multiplexing and effects	
		of sign	al clipping	453
		14.7.1	Signal shaping	455
		14.7.2	PAPR reduction	456
		14.7.3	Combined effects of non-linearities and turbulence	
			in FSO communication	458
	Refe	rences		459
15	Mult	tibeam	joint processing satellites: cooperative relays,	
	high	above		465
	15.1	An inti	roduction to multibeam satellite networks	465
	15.2	Practic	cal constraints	467
		15.2.1	Channel state information acquisition	467
		15.2.2	Frequency reuse	467
			Feeder link	469

	15.2.4 Framing	469		
	15.2.5 The non-linear satellite channel	470		
15.3	System model	470		
	15.3.1 Multicast model	471		
	15.3.2 Multibeam satellite channel	472		
	15.3.3 Average user throughput	473		
15.4	Sum rate and throughput maximization	473		
	15.4.1 Per-antenna power constrained sum-rate maxir	mization 474		
	15.4.2 Throughput maximization under availability co	onstraints 475		
	15.4.3 Performance evaluation	477		
15.5	Linear precoding over non-linear channels	482		
	15.5.1 The non-linear multibeam channel	482		
	15.5.2 Effects of non-linear amplification	485		
	15.5.3 Counteracting non-linearities	487		
15.6	Receiver implementation	491		
	15.6.1 DVB-S2X superframe structure	492		
	15.6.2 Synchronization and channel acquisition	494		
15.7	Conclusions	497		
Refe	References			

Index

501