## Contents

Preface to Volumes 1 and 2  xlvii  
Volume 1 Editor Biographies  xix  
List of Authors  xxiii  
List of Reviewers  xxv  

### Part I  Real aperture array radar  

**Introduction to real aperture array radar**  
*Ulrich Nickel*  

Reference  

1  Target parameter estimation and array features  
*Ulrich Nickel*  

Abstract  

1.1 Introduction  

1.2 Basic concepts and results of array antennas  
1.2.1 Plane wave at single frequency  
1.2.2 Band-limited signals  
1.2.3 Narrowband and broadband beamforming  
1.2.4 Difference beamforming and monopulse estimation  

1.3 Design factors for arrays  
1.3.1 Influence of element patterns  
1.3.2 Thinned arrays  
1.3.3 Arrays with sub-arrays  
1.3.4 Space-time arrays  

1.4 Array accuracy requirements  
1.4.1 IQ-de-modulation errors  
1.4.2 Bandpass filter errors  
1.4.3 AD-converter limitation  

1.5 Antenna pattern shaping  

1.6 Adaptive interference suppression  
1.6.1 Adaptive beamforming principles  
1.6.2 Estimation of adaptive weights  
1.6.3 Determination of the dimension of jammer sub-space (dimJSS)  
1.6.4 Other aspects of implementation  

Reference  


# Novel radar techniques and applications – volume 1

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Parameter estimation and super-resolution</td>
<td>57</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Maximum likelihood estimation and monopulse</td>
<td>57</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Super-resolution</td>
<td>59</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Super-resolution applied to sub-arrays</td>
<td>65</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Super-resolution combined with adaptive interference suppression</td>
<td>66</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Adaptive target number determination</td>
<td>66</td>
</tr>
<tr>
<td>1.8</td>
<td>Extension to space-time arrays</td>
<td>69</td>
</tr>
<tr>
<td>1.9</td>
<td>Embedding of array processing into full radar data processing</td>
<td>70</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Adaptive monopulse</td>
<td>70</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Adaptive detection</td>
<td>76</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Adaptive tracking</td>
<td>83</td>
</tr>
<tr>
<td>1.10</td>
<td>Conclusions and final remarks</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>List of symbols and functions</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>List of acronyms</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Robust direct data domain processing for MTI</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Diego Cristallini, Wolfram Bürger and Richard Klemm</td>
<td></td>
</tr>
</tbody>
</table>

Abstract 99

2.1 Introduction 100

2.2 Notation and signal model 102

2.3 Robust D³-STAP 105

2.3.1 RD³-STAP with dimension reducing transformations 107

2.4 Results of RD³-STAP 111

2.4.1 Simulative case study 111

2.4.2 Application of RD³-STAP filter to real data 113

2.5 Applications of RD³-STAP 119

2.5.1 RD³-STAP filter in the SAR-GMTI case 119

2.5.2 Target DOA estimation with RD³-STAP 127

2.6 Conclusions 131

2.7 Glossary 131

References 132

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Array radar resource management</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Alexander Charlish and Fotios Katsilieris</td>
<td></td>
</tr>
</tbody>
</table>

Abstract 135

3.1 Management architecture 135

3.2 Task management 137

3.2.1 Search management 137

3.2.2 Confirmation management 148

3.2.3 Track management 149
Part II Imaging radar

Introduction to imaging radar

Christoph H. Gierull

Onset 175
Twentieth century 175
Twenty-first century 176
Outlook 180
Acknowledgement 181
References 181

4 VideoSAR imaging for real-time persistent surveillance

Anthony Damini, Richard W. Linderman and Dennis Fitzgerald

Abstract 183
4.1 Introduction 184
4.2 VideoSAR imaging 186
   4.2.1 Image formation theory 186
   4.2.2 Back-projection for VideoSAR image formation 189
   4.2.3 Non-coherent integration of back-projected images 192
   4.2.4 Image ambiguities 196
   4.2.5 Autofocus considerations 198
4.3 Change detection 199
   4.3.1 Background 199
   4.3.2 Amplitude change detection 202
   4.3.3 Coherent change detection 202
4.4 Real-time VideoSAR implementation 211
   4.4.1 Challenges mapping core VideoSAR algorithms onto GPGPUs 212
   4.4.2 System overview 214
   4.4.3 High-speed data acquisition 214
   4.4.4 High-performance computer 215
   4.4.5 SAR image formation software 216
   4.4.6 VideoSAR visualization 217
5 High-resolution wide-swath SAR

Ishuwa Sikaneta and Delphine Cerutti-Maori

Abstract

5.1 Introduction

5.2 Under-sampled SAR signals

5.3 SAR signal model

5.4 Multi-channel processing for HRWS

5.5 Multiple channels from sub-arrays

5.6 Chapter summary
5.A.2 Minimization of the cost function 261
References 261

6 SAR interferometry 265
Andrea Monti-Guarnieri, Fabio Rocca and Stefano Tebaldini

Abstract 265
6.1 Introduction 265
6.2 InSAR generalities 266
6.3 Digital elevation models (DEM) from the interferometric phase 268
6.4 Phase unwrapping and DEM generation 270
6.5 Coherence: the temporal stability of the targets 272
6.6 Baselines, coherence and wavenumber shift 276
6.7 Co-registration 279
6.8 Terrain motion measurement through the interferometric phase 281
6.9 The atmospheric contribution to the interferometric phase 282
6.10 Other phase noise sources 285
6.11 Multipass methodologies: persistent scatterers and small baseline 287
6.12 3D displacement measurements 289
6.13 Applications of differential InSAR: land subsidence and infrastructure monitoring 290
6.13.1 Infrastructure monitoring 292
6.14 SAR tomography of penetrable media 293
6.14.1 TomoSAR imaging principles 293
6.14.2 Real data processing 296
6.14.3 Applications 297
6.14.4 Polarimetric SAR tomography 297
6.15 The future of InSAR 300
Acronyms 303
References 304

7 Space-based SAR ground moving target indication 313
Christoph H. Gierull, Ishuwa Sikaneta and Delphine Cerutti-Maori

Abstract 313
7.1 Introduction 314
7.1.1 Background 314
7.1.2 Adding MTI on space-borne SAR 315
7.1.3 MODEX on RADARSAT-2 315
7.2 Classic imaged-based SAR-GMTI 317
7.2.1 SAR displaced phase centre antenna 318
7.2.2 SAR along-track interferometry 321
7.2.3 Strong non-homogeneous clutter 323
7.3 Coherent multichannel SAR-GMTI 327
7.3.1 Spatial diversity via aperture switching and toggling 327
7.3.2 Imaging STAP (iSTAP) 330
8 Interferometric and tomographic SAR

Gianfranco Fornaro and Antonio Pauciullo

Abstract

8.1 Introduction
8.2 SAR interferometry
8.2.1 Basic concepts
8.2.2 Decorrelation of radar echoes
8.2.3 Differential interferometry
8.3 Multi-pass differential interferometry
8.3.1 Coherent stacking interferometry
8.3.2 Persistent scatterers interferometry
8.3.3 The two-step A-DInSAR approach
8.4 SAR tomography
8.5 Multi-dimensional tomography imaging methods
8.5.1 Beamforming
8.5.2 Singular value decomposition
8.5.3 Capon filter
8.5.4 Compressed sensing
8.5.5 Detection of concentrated scatterers
8.5.6 Further aspects on multi-look processing of interferometric SAR data

Acknowledgements

References

9 Bi- and monostatic SAR-GMTI

Ingo Walterscheid, Diego Cristallini and Robert Kohlleppel

Abstract

9.1 Introduction
9.2 Geometry for joint monostatic and bistatic SAR-GMTI
9.3 Detection and localization performances
9.4 Association of monostatic and bistatic detections
9.4.1 Direct association in densely populated target scenarios
9.4.2 Association by target tracking
9.4.3 Simulation results
## Contents

9.5 Joint monostatic and bistatic SAR-GMTI 424
9.6 Experimental results 425
  9.6.1 Moving target detection 427
  9.6.2 Imaging 432
9.7 Conclusions 435

Appendix A: Data synchronization 436
Glossary 439
References 440

### 10 Multistatic and MIMO ISAR techniques

*Debora Pastina and Marta Bucciarelli*

Abstract 445

10.1 Introduction 446

10.2 Distributed ISAR system 449
  10.2.1 DISAR geometry and concept 449
  10.2.2 MIMO ISAR formations configuration 454

10.3 Distributed ISAR point spread function 456
  10.3.1 Theoretical DISAR PSF 456
  10.3.2 Theoretical performance analysis 460
  10.3.3 Experimental validation 464

10.4 Distributed ISAR images formation 467
  10.4.1 DISAR focusing techniques 467
  10.4.2 Theoretical performance analysis 470
  10.4.3 Experimental validation 477

10.5 Motion estimation based on distributed ISAR data 480

10.6 Conclusion 482

Acknowledgements 483

Glossary 483

References 484

### 11 Focussing moving objects using the VSAR algorithm

*Luke Rosenberg, Mark Sletten and Jakov Toporkov*

Abstract 489

11.1 Introduction 489

11.2 VSAR processing 491
  11.2.1 Focussing with a moving target 491
  11.2.2 Velocity SAR 494
  11.2.3 VSAR limitations 496

11.3 Ground-based demonstration with the NRL FOPAIR system 497
  11.3.1 The NRL FOPAIR system 497
  11.3.2 Emulating an MSAR system 497
  11.3.3 VSAR demonstration using FOPAIR 499

11.4 Airborne demonstration with the NRL MSAR system 501
  11.4.1 NRL MSAR system 501
  11.4.2 Pre-processing 503
11.4.3 Example dataset 1 505
11.4.4 Example dataset 2 509
11.5 Applications of velocity processing 511
  11.5.1 Target detection 511
  11.5.2 Velocity ISAR 512
11.6 Conclusion 513
Acknowledgements 513
Appendix A: Derivation of Doppler components 513
References 514

Part III Passive and multistatic radar 517

Introduction to passive and multistatic radar 519
Pierfrancesco Lombardo

References 526

12 Bistatic clutter modelling 535
Hugh Griffiths and Riccardo Palamà

Abstract 535
12.1 Radar clutter 535
12.2 Clutter models 537
  12.2.1 Mean reflectivity 537
  12.2.2 Clutter statistics 538
12.3 Bistatic clutter models 539
  12.3.1 Bistatic geometry 539
  12.3.2 Bistatic sea clutter 540
  12.3.3 Bistatic land clutter 544
  12.3.4 Statistical properties of bistatic clutter 546
  12.3.5 Clutter in passive bistatic radar 548
12.4 Forward scatter 549
  12.4.1 Target echo signal and clutter 549
  12.4.2 Experimental measurements 551
12.5 Bistatic clutter measurements 552
  12.5.1 Practical considerations in bistatic radar trials 552
  12.5.2 Clutter spikes 557
12.6 Summary 558
Acknowledgements 558
References 559

13 Forward scatter radar 563
Marina Gashinova, Liam Daniel, Alexander Myakinkov and Mikhail Cherniakov

Abstract 563
13.1 Introduction 563
13.2 Radar topology and electromagnetic wave scattering mechanism 564
13.2.1 Monostatic, bistatic and forward scatter radar topology 564
13.2.2 Forward scatter cross-section 567
13.2.3 Target FSCS pattern 573
13.3 Power budget, signature of moving target and optimal signal
processing in FSR 578
13.3.1 Power budget analysis 578
13.3.2 Target signature in FSR 585
13.3.3 Optimal signal processing in FSR 591
13.4 Clutter in FSR 598
13.4.1 Vegetation clutter 599
13.4.2 Sea clutter 600
13.5 Air target tracking in CW FSR 601
13.5.1 Target resolution in forward scatter radar 601
13.5.2 FSCS and coverage when tracking air target 603
13.5.3 Mathematical model of measuring process. Maximum
likelihood estimation of trajectory parameters 605
13.5.4 Potential accuracy of trajectory parameters
measurement 607
13.5.5 Iterative algorithm of co-ordinate estimation 610
13.5.6 Experimental tracking results 612
List of abbreviations 613
References 614

14 Radar imaging of building interiors 621
Fauzia Ahmad and Moeness G. Amin

Abstract 621
14.1 Introduction 621
14.2 Beamforming for imaging stationary indoor scenes 624
14.2.1 Data-independent beamforming 625
14.2.2 Compensation of wall propagation effects 626
14.3 SAR imaging using attributed scattering centre features for
characterization of building interior structure 629
14.3.1 Canonical scattering models 630
14.3.2 Feature extraction 632
14.3.3 Illustrative example 635
14.4 Correlogram-based pattern matching for building feature
extraction 638
14.4.1 Illustrative example 639
14.5 Building feature extraction using overcomplete dictionaries 642
14.5.1 OCD design 643
14.5.2 Atom definition 643
14.5.3 Illustrative example 647
14.6 Conclusion 651
List of acronyms 652
References 653
15 Short-range passive radar potentialities

Fabiola Colone

Abstract
15.1 Introduction
15.2 Maritime surveillance applications
  15.2.1 Signal processing scheme and its peculiarities
  15.2.2 Experimental results against small RCS targets
15.3 Vehicular traffic monitoring
  15.3.1 Vehicles detection using different illuminators of opportunity
  15.3.2 Target localization based on a network of passive sensors
15.4 Indoor surveillance applications
  15.4.1 Experimental results for indoor target detection and localization
  15.4.2 Resolution improvement via ISAR techniques
15.5 Steps toward target classification: cross-range profiling of targets
15.6 Conclusions
Acknowledgements
List of acronyms
References

16 GNSS-based passive radar

Michail Antoniou and Mikhail Cherniakov

Abstract
16.1 Introduction
16.2 Monostatic, bistatic and GNSS-based SAR
  16.2.1 Monostatic SAR
  16.2.2 Bistatic SAR
  16.2.3 GNSS-based SAR
16.3 GNSS overview
  16.3.1 GNSS signals
  16.3.2 GNSS signal power
16.4 GNSS-based SAR power budget
16.5 Spatial resolution
16.6 GNSS-based SAR signal processing
  16.6.1 Signal synchronization
  16.6.2 Image formation
16.7 Experimental results
  16.7.1 Fixed receiver
  16.7.2 Airborne receiver
16.8 GNSS-based SAR potential for advanced techniques
  16.8.1 Coherent change detection
  16.8.2 Multi-perspective imaging
  16.8.3 Multistatic imaging for spatial resolution improvement
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>761</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>762</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>762</td>
</tr>
<tr>
<td>References</td>
<td>763</td>
</tr>
</tbody>
</table>

### 17 Airborne passive radar
*Krzysztof Kulpa, Damian Gromek and Bartek Dawidowicz*

**Abstract**

17.1 Airborne passive synthetic aperture radar  
17.1.1 Signal dynamic range considerations  
17.1.2 Range and cross-range resolution in airborne passive SAR  
17.1.3 Airborne passive SAR experiments  
17.1.4 APSAR conclusions

17.2 Target detection in airborne passive radar  
17.2.1 Monostatic case  
17.2.2 Received signal model  
17.2.3 Estimation of the multichannel passive radar parameters  
17.2.4 Time datacube  
17.2.5 Target detection in passive airborne radar  
17.2.6 Clutter cancellation in airborne passive radar  
17.2.7 Measurement campaigns  
17.2.8 Airborne passive radar conclusions

**References**

### 18 Multi-illuminator and multistatic passive radar
*Heiner Kuschel, Fabienne Hoffmann and Alexander Schroeder*

**Abstract**

18.1 Introduction  
18.1.1 Multistatic PCL configurations  
18.1.2 Multi-band PCL systems with spectrally orthogonal illuminators

18.2 Passive radar processing for sensors using FM broadcast transmitters  
18.2.1 Illuminator properties  
18.2.2 Direct signal suppression

18.3 Passive radar processing using digital broadcast transmissions  
18.3.1 Illuminator properties  
18.3.2 Single versus multi-frequency networks  
18.3.3 Signal reconstruction

18.4 A hybrid passive radar processing concept  
18.5 A multi-illuminator passive radar system  
18.6 Multistatic, multi-illuminator passive radar applications  
18.6.1 A multistatic PCL cluster for low-level target gap coverage

**References**
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6.2 A passive radar based warning sensor network for aviation obstacles</td>
<td>842</td>
</tr>
<tr>
<td>18.7 Perspectives for multistatic multi-illuminator PCL systems</td>
<td>844</td>
</tr>
<tr>
<td>List of acronyms</td>
<td>847</td>
</tr>
<tr>
<td>References</td>
<td>848</td>
</tr>
<tr>
<td>19 Passive MIMO radar networks</td>
<td>851</td>
</tr>
<tr>
<td>Daniel E. Hack, Lee K. Patton and Braham Himed</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>851</td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>851</td>
</tr>
<tr>
<td>19.2 Signal models</td>
<td>856</td>
</tr>
<tr>
<td>19.2.1 Passive MIMO radar</td>
<td>856</td>
</tr>
<tr>
<td>19.2.2 Active MIMO radar</td>
<td>859</td>
</tr>
<tr>
<td>19.2.3 Passive source localization</td>
<td>859</td>
</tr>
<tr>
<td>19.3 Centralized GLRT detection</td>
<td>860</td>
</tr>
<tr>
<td>19.3.1 Passive MIMO radar</td>
<td>860</td>
</tr>
<tr>
<td>19.3.2 Active MIMO radar</td>
<td>864</td>
</tr>
<tr>
<td>19.3.3 Passive source localization</td>
<td>864</td>
</tr>
<tr>
<td>19.3.4 Detector comparisons</td>
<td>864</td>
</tr>
<tr>
<td>19.3.5 Probability distributions</td>
<td>865</td>
</tr>
<tr>
<td>19.4 Detection sensitivity</td>
<td>867</td>
</tr>
<tr>
<td>19.4.1 Simulation scenario</td>
<td>867</td>
</tr>
<tr>
<td>19.4.2 Dependence on reference and surveillance SNR</td>
<td>867</td>
</tr>
<tr>
<td>19.4.3 Dependence on signal length</td>
<td>869</td>
</tr>
<tr>
<td>19.4.4 Discussion</td>
<td>870</td>
</tr>
<tr>
<td>19.5 Detection ambiguity</td>
<td>872</td>
</tr>
<tr>
<td>19.5.1 Dependence on waveform ambiguity</td>
<td>872</td>
</tr>
<tr>
<td>19.5.2 Simulation scenario</td>
<td>874</td>
</tr>
<tr>
<td>19.5.3 AMR ambiguity</td>
<td>874</td>
</tr>
<tr>
<td>19.5.4 PSL ambiguity</td>
<td>875</td>
</tr>
<tr>
<td>19.5.5 PMR ambiguity</td>
<td>878</td>
</tr>
<tr>
<td>19.6 Conclusion</td>
<td>880</td>
</tr>
<tr>
<td>References</td>
<td>881</td>
</tr>
<tr>
<td>Index</td>
<td>885</td>
</tr>
</tbody>
</table>