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16

Ideally, to obtain both long detection range and fine range 
resolution, extremely narrow pulses (for fine resolution) 
of exceptionally high peak power (for long range) should 
be transmitted. However, there is a practical limit on the 

amount of peak power that subsequently limits the detection 
range. This peak power limit forces the use of long pulses at 
the expense of range resolution.

The solution to this dilemma is pulse compression, in which 
coding is modulated onto long, peak power–constrained 
pulses during transmit, followed by “compression” of the 
received echoes by decoding their modulation. This provides 
the necessary average power for an achievable level of peak 
power. This chapter introduces the fundamental principles of 
pulse compression and the various classes of modulation cod-
ing, otherwise known as the radar waveform.

16.1 Pulse Compression: A Beneficial 
Complication

Pulse compression might appear to be an unnecessary compli-
cation to the notion of how radar operates. Narrow pulses can 
easily provide the desired range resolution by setting the pulse 
width. For relatively short-range operation this arrangement is 
acceptable. However, if one wishes to have long-range detec-
tion capability, it becomes clear from the radar range equa-
tion (see Chapter 13) that increasingly high peak powers are 
necessary. However, there are practical limits to what can be 
made available from a realistic radar transmitter. The neces-
sary extension to longer pulses subsequently establishes a set 
of trade-offs to design the appropriate transmitted signal and 

Pulse Compression 
and High-Resolution 
Radar
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2    Part III: Fundamentals of Radar

receive filtering to perform the desired radar sensing function. 
It is also worth noting that echo-locating mammals seemed 
to have developed this capability long before radar engineers 
ever thought of it.

The Pulse Width Dilemma. Figure 16-1 illustrates an example 
of the transmission of a short pulse (at peak power) and the 
resulting echoes from two targets that are closely spaced in 
range. As long as these targets are separated by more than the 
pulse width it is possible to distinguish one from the other. 
However, because there is a limit to the amount of peak power 
the transmitter can achieve, this short pulse approach severely 
limits the maximum range from which targets can be reliably 
detected.

To extend the maximum detection range, more energy is 
required to be “put on the target.” Since the peak power is 
bounded, the pulse width must be increased (in time). Figure 
16-2 shows an example of what occurs when the short pulse 
from Figure 16-1 is extended in time (pulse width) by a factor 
of 5. The energy that is incident onto, and thereby reflected 
from, a target also increases by a factor of 5, thus extending 
the maximum detection range. However, now there is overlap 
between the two closely spaced targets such that they cannot 
be distinguished from one another. The solution to this prob-
lem is pulse compression.

Waveforms. In radar, the waveform is simply the transmitted 
signal. This may be a continuous signal or it may be a pulse. 
The notion of a radar waveform is extended here to include 
a modulation imparted upon a pulse. In principle, this mod-
ulation could be in terms of frequency/phase, amplitude, or 
polarization, though the former is by far the most common. 
Taken as a whole, pulse compression involves the transmission 
of a modulated, pulsed waveform followed by filtering of the 
received echoes, where the filter is coherently matched to the 
waveform.

There are often numerous objectives to be considered when 
designing a waveform, including

•	 Total energy of the modulated pulse (this relates to the SNR 
of received echoes)

•	 Discrimination between delay-shifted versions of the wave-
form (for both range resolution and sensitivity)

•	 Impact of Doppler shift

•	 Low probability of intercept (by a potential adversary)

The pulse energy is maximized when the amplitude envelope 
of the pulse is constant. The delay and Doppler characteris-
tics of a waveform are collectively referred to as the waveform 
ambiguity function (see Chapter 11). The intercept probability 
of a waveform is dependent upon whether it appears to be 
man-made or naturally occurring (noise radar is an example 
of the latter).

Transmitted
Short Pulse 

Time

Received Echoes

Figure 16-1. With a short pulse, closely spaced targets can be 
resolved. However, the limit on peak power likewise limits the 
maximum detectable range.

Time

Received EchoesTransmitted 
Short Pulse

Figure 16-2. With the increased energy from a long pulse, the 
maximum detection range can be extended. Pulse compression is 
now required to separate the closely spaced targets.
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Most commonly, a waveform can be ascribed to one of the 
following classes: frequency modulated chirp (linear or nonlin-
ear) or phase-coded waveform (biphase or polyphase).

Linear frequency modulation (LFM) chirp is the most widely 
used of all waveforms due to its simplicity of implementation 
on transmit, its robustness to Doppler shift, and the existence 
of a useful wideband receiver filtering structure known as 
stretch processing. However, due to relatively high time-delay 
(range) sidelobes resulting from LFM matched filtering, non-
linear frequency modulation (NLFM) and phase-coded wave-
forms have been devised as possible alternatives.

The Matched Filter. What actually happens when an echo 
passes through a filter that is matched to the transmitted wave-
form can be visualized if the echo is thought of as consist-
ing of a sequence of subpulses, or chips, each with a distinct 
phase. As depicted in Figure 16-3 the matched filter is like-
wise a sequence of chips, though each possesses the conjugate 
phase (i.e., reflected about the real, or horizontal, axis). If the 
aligned sets of chips are piecewise multiplied, they all produce 
the same value (here, set to an arbitrary phase of e j0 = 1 for 
simplicity) such that they add constructively in phase.

Figure 16-3 depicts the precise point in time when an echo 
aligns with the matched filter, thus producing a gain on the 
echo. At other delay shifts a different phenomenon is observed. 
For example, Figure 16-4 illustrates what occurs when the echo 
is shifted in time by just one chip interval compared with the 
matched case of Figure 16-3. This time, when the aligned chips 
are piecewise multiplied, a set of phase values is produced that 
are out of phase with each other and thus combine destruc-
tively when added. The resulting summation will typically be 
much smaller than the matched case of Figure 16-3. For other 
delays, different sets of phases are produced by the matched 
filter, which subsequently yields different destructive combina-
tions that vary as a function of delay in a way that is character-
istic to each individual waveform.

In reality, a physical waveform must be continuous. For the 
discrete illustrations in Figures 16-3 and 16-4 the chips can 
be thought of as representing basic phase shapes that enable 
the adjacent chips to connect in a continuous manner over the 
extent of the waveform (and likewise the matched filter). When 
considered in this way, the matched filter concept extends to 
all types of frequency modulated and phase-coded waveforms.

It is becoming increasingly common to perform matched filter-
ing digitally, thus requiring sampling of the received echoes 
and a digital representation of the filter. The determination of 
the sampling rate involves a trade-off between higher com-
putational complexity and the acceptable degree of loss from 
range straddling (also known as range cusping) that occurs 
when an echo is not sampled precisely at its matched position.

The continuum of delay shifts comprising the matched filter 
response to a single echo (with no Doppler) is actually the 

Time

Reflected Waveform

Matched Filter

Sum = 1+ 1+ 1+ 1+ 1+ 1 + 1+ 1 = 8= 1= 1= 1= 1= 1= 1= 1= 1

Figure 16-3. For a waveform represented as a sequence of 8 chips, 
the matched filter constructively combines the segments to yield a 
processing gain, also known as the pulse compression ratio, of 8.

Time

sum = ejθ + ejδ + ejα + ejφ + ejψ + ejτ + ejμ

Reflected Waveform

Matched Filter

= ejθ = ejδ = ejα= 0 = ejφ = ejψ = ejτ = ejμ

Figure 16-4. For delays different from the match point, the 
segments of the echo do not match the phase sequence of the 
matched filter, thereby combining destructively to produce a 
smaller value (here, much less than 8).
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autocorrelation of the transmitted waveform. For example, 
Figure 16-5 illustrates the autocorrelation for an LFM chirp that 
is normalized so the match point is at 0 dB. Figure 16-5 shows 
the ideal pulse compressed response having −13 dB peak sid-
elobes (these may be reduced using weighting; see the section 
“Amplitude Weighting”).

Resolution and Range Sidelobes. Similar to an antenna radia-
tion pattern, the matched filter mainlobe is the delay region 
immediately surrounding the matched position. Using the LFM 
matched filter response in Figure 16-5 as an example, it is pre-
dominantly the width of the mainlobe that determines if two 
closely spaced targets in range can be resolved. Therefore, if 
the matched filter is applied to the echoes generated by the 
two targets of Figure 16-2 (assuming the pulse was modulated 
with an LFM waveform), the pulse compressed output would 
look like the result shown in Figure 16-6.

As it is much shorter than the pulse width, the width of the 
mainlobe enables improved range resolution. The range reso-
lution is now inversely proportional to the bandwidth of the 
waveform. A convenient point of reference is that a range 
resolution of 30 cm corresponds to a waveform bandwidth of 
approximately 500 MHz.

Referring again to Figure 16-5, the smaller peaks surrounding 
the mainlobe are known as range sidelobes. For the LFM chirp, 
the largest sidelobe is approximately 13 dB lower than the value 
at the matched position and defines the peak sidelobe level 
(PSL). Range sidelobes are one of the performance trade-offs 
of pulse compression, as they limit the sensitivity of the radar. 
For example, if the received power of the two target echoes 
depicted in Figure 16-6 were very different, the matched filter 
response would instead look like the result in Figure 16-7, in 
which the range sidelobes induced by the higher-power target 
can actually mask the mainlobe of the lower-power target.

Doppler Effects and the Ambiguity Function. The discussion 
thus far has been limited to the case where no Doppler effects 
are present. Doppler is a shift in frequency that is induced 
by radial motion between the radar and the subject of the 
radar illumination (see Chapter 18 for a detailed discussion). 
For example, a police radar measures the amount of frequency 
shift of the echo from a moving vehicle to measure its speed 
relative to the position of the radar. Relative motion towards the 
radar causes a positive frequency shift (i.e., a higher frequency 
echo), while relative motion away from the radar causes a neg-
ative shift (i.e., a lower frequency echo).

With regard to pulse compression, the impact of motion-
induced Doppler frequency shift is an altering of the phase 
progression of the waveform echo. As a result, the gain from 
constructive combining at the matched position (see Figure 
16-3) can be degraded or even completely lost depending on 
the degree of Doppler shift and the nature of the waveform.

Mainlobe

0

–5

–10

–15

–20

–25

–30

–35

–40

–45
–0.5–1 0 0.5 1

Sidelobes

dB

Delay (Normalized by 1/τ)

Figure 16-5. The matched filter response (waveform 
autocorrelation) for an LFM chirp with uncompressed pulse width 
τ illustrates the mainlobe and sidelobes in delay that would result 
from a single target echo.

Target #2Target #1

Delay
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Figure 16-6. The echoes from two closely spaced targets may be 
resolved if they have similar receive powers and are not too close 
together.

Target #2Target #1
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Delay

Figure 16-7. If the receive echoes from two closely spaced targets 
have sufficiently disparate receive powers, then the smaller target 
may be lost among the range sidelobes of the larger target.
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A plot of the matched filter response versus Doppler frequency 
shift is shown in Figure 16-8. This is defined as the ambiguity 
function (see Chapter 11).

The matched position is located where both delay and Doppler are 
zero. The zero Doppler cut (horizontally across Doppler = 0 Hz) 
reveals the waveform autocorrelation (and is the same result 
shown in Fig. 16-5). In the Doppler dimension the mainlobe 
width is inversely proportional to the pulse width. Away from 
the mainlobe, range-Doppler sidelobes can be observed.

In current fielded radar systems, the two most commonly 
employed waveforms are the LFM chirp and the biphase (or 
binary phase)-coded waveform. The following sections outline 
the benefits and deficiencies of each.

16.2 Linear Frequency Modulation (Chirp)

Because of its similarity to the chirping of a bird, its inventors 
called this form of modulation a “chirp.” Since it was the first 
pulse compression technique, the term chirp is still in common 
usage and is synonymous with pulse compression.

For LFM chirp coding, the frequency of the transmitted pulse 
is increased (an “up-chirp”) or decreased (a “down-chirp”) at a 
constant rate throughout its length (see Figure 16-9), thus every 
echo has the same linear increase/decrease in frequency.

LFM Implementation. A major benefit of LFM chirp is the ease 
with which it can be implemented. The transmitter needs only 
to sweep linearly from some starting frequency at the begin-
ning of the pulse to some ending frequency at the tail of the 
pulse, which can be accomplished in many different ways in 
both analog and digital hardware.

Filtering may be done with an analog device—such as an 
acoustical delay line—or, more common in modern systems, 
digitally. For a narrow range swath the LFM chirp can be 
decoded using a technique called stretch processing, which can 
accommodate a very large waveform bandwidth, thus enabling 
very fine range resolution.

For stretch processing (described in detail in the accompanying 
panel, the echo delay time (range) is converted to frequency. As 
a result, the return from any one range corresponds to a con-
stant frequency, and the returns from different ranges may be 
separated with a bank of narrowband filters implemented with 
the efficient fast Fourier transform (see Chapter 21). Range is 
determined by measuring the instantaneous difference between 
the frequencies of the transmitted and received signals.

Incidentally, stretch processing is similar to the FM ranging 
technique used by continuous wave (CW) radars (see Chapter 
17). The principal differences are that instead of transmitting 
pulses, the CW radar transmits continuously, and the period 
over which the transmitter’s frequency changes in any one 
direction is many times the round-trip ranging time.
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Figure 16-8. Delay/Doppler ambiguity function for the LFM chirp 
(brightness scale in decibels).

Transmitted Pulse

Time

Figure 16-9. An LFM up-chirp.
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Stretch Processing of Lfm Chirp

For a narrow range swath, such as is mapped by a synthetic � 
aperture radar (see Chapter 33), LFM chirp modulation is 

commonly decoded by a technique called stretch processing or 
deramping.

A B

R0

Swath

For the up-chirp example, as the return from the swath is 
received, its frequency is subtracted from a reference frequency 
that increases at the same rate as the transmitter frequency. 
However, the reference frequency increases continuously 
throughout the entire interval over which echoes are received.

Time ∝ Range

∝ RA ∝ RB

Reference
f

RBRAR0

f0

Frequency

Return A

Return B
XMTR

τ

Consequently, the difference between the reference fre-
quency and the frequency of the return from any particular 
point on the ground is constant. Moreover, as can be seen 
from the above figure, if we subtract the reference frequency’s 
initial offset, f0, from the difference already obtained, the result 
is proportional to the range of the point from the near edge of 
the swath, R0. Range is thus converted to frequency.

A B

Swath

C D

To see how fine resolution is achieved, consider the returns 
from four closely spaced points after the subtraction has been 
performed.

Echo D
Echo C

Echo B
Echo A

Time ∝ Range

τ

RA RB RC RD

Freq

fD
fC
fB
fA

Although the returns were received such that their pulse 
echoes almost completely overlap, the slight stagger in 
their arrival times results in clearly discernible differences in 
frequency.

As indicated in the figure below, the continuously changing 
reference frequency may be subtracted at one of three points 
in the receiving system. One is the mixer, which converts the 
radar returns to the receiver’s intermediate frequency (IF). The 
second point is the synchronous detector, which converts 
the output of the IF amplifier to video frequencies. And the 
third point is in the signal processor, after the video has been 
digitized.

To sort the difference frequencies, the video output of the 
synchronous detector is applied to a bank of narrowband fil-
ters, implemented with the fast Fourier transform.

Synch
Det

Ref

MixerIF
Amplifier

L.O.
Narrow Band

Filters

f2

f1

f3

f4

f5

f6

f7

A–D
Conv

Sig
Proc

OrOr

Time Time Time

f f f
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Pulse Compression Ratio. The straightforward nature of the 
LFM provides a convenient framework with which to better 
explain the processing gain and range resolution enhancement 
provided by pulse compression. The pulse compression ratio, 
represented by the factor 8 for the example in Figure 16-3, is 
the ratio of the uncompressed pulse width τ to the compressed 
width τcomp. Whereas the previous example explained the phe-
nomenon in terms of phase-modulated subpulses, LFM chirp 
allows us to consider it in terms of frequency sensitivity.

If returns received simultaneously from two slightly different 
ranges are to be separated on the basis of the difference in 
their frequencies, besides providing a delay proportional to 
frequency (refer to the panel on stretch processing), a second 
requirement must also be satisfied. The frequency difference 
must be large enough for the signals to be resolved by the filter.

As will be made clear in Chapter 20, the frequency resolution 
of the matched filter response increases (becomes narrower) 
as the uncompressed pulse width increases (see Figure 16-10). 
Specifically, the frequency resolution Δf is related to the uncom-
pressed pulse width as

	
∆f = 1

τ .

In other words, as illustrated by Figure 16-11, for the LFM 
matched filter to resolve two closely spaced echoes, the instan-
taneous difference in their delay-shifted frequencies must meet 
or exceed the inverse of the uncompressed pulse width τ.

Furthermore, the compressed pulse width τcomp is the period of 
time over which the frequency of the uncompressed LFM pulse 
changes by Δf (see Figure 16-12). By extension, if the frequency 
of the uncompressed LFM pulse changes at a rate of Δf/τcomp (in 
hertz per second), then the total change in frequency, ΔF, over 

Amp

Amp

Freq

Time

Time

Time

(3) Compressed
Pulse

(1) Uncompressed
Pulse

(2) Modulation

τ

τ

∆F

τcomp

τcomp

= 1
τcomp

= 1
∆F

Figure 16-10. Conceptual relationship between uncompressed 
pulse width, chirp modulation bandwidth ΔF, and compressed 
pulse width for an LFM waveform. The compressed pulse width 
corresponds to the mainlobe from Figure 16-5.

F
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c
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∆ f

∆ f

Time

τ

τ= 1

Return A

Return B

Figure 16-11. For a filter to resolve two concurrently received LFM 
returns, the instantaneous difference in their frequencies (Δf ) must 
equal at least 1/τ.

Compressed Pulses
(As Seen at Filter Output)

τcomp

∆ f

τcomp τcomp

A B

Return A

Return B

Figure 16-12. If the minimum resolvable frequency difference is Δf, the 
time in which the frequency of the uncompressed LFM pulse changes by 
Δf is the width of the compressed pulse, τcomp.
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the duration of the uncompressed pulse will be this rate times 
the uncompressed pulse width, τ.

The rate of frequency change Δf/τcomp is known as the chirp rate:

	
chirp rate = in hertz per second

comp

∆f
τ ( ).

The total change in frequency, ΔF, is the bandwidth for the 
LFM chirp:

	
bandwidth =  =  = chirp rate  

comp
∆ ∆
F

f
τ τ τ





× .

As is apparent from the geometry of Figure 16-13, the pulse 
compression ratio, τ/τcomp, equals the ratio of ΔF to Δf:

	
Pulse compression ratio =

comp

τ
τ = ∆

∆
F
f

.

Substituting 1/τ for Δf, the pulse compression ratio equals the 
uncompressed pulse width times ΔF:

Pulse compression ratio = τΔF.

The quantity τΔF is also called the time–bandwidth product.

This simple relationship—pulse compression ratio equals 
time–bandwidth product—tells us a lot about the LFM chirp. To 
begin with, for a given uncompressed pulse width τ, the com-
pression ratio increases directly with an increase in bandwidth 
ΔF. Conversely, for a given bandwidth ΔF, the compression 
ratio increases directly with an increase in the uncompressed 
pulse width τ.

If the time–bandwidth product is set equal to τ/τcomp as

	
τ τ

τ∆F =
comp

,

τ cancels out so that

	
τcomp .= 1

∆F

In other words, the width of the compressed pulse is deter-
mined entirely by the bandwidth ΔF of the transmitted pulse; 
that is, the greater the frequency change, the narrower the 
compressed pulse width. Rearranging this last equation tells us 
that the total change in transmitter frequency (the LFM band-
width) must be

	
∆F = 1

τcomp
.

This relationship provides a useful benchmark for the transmit-
ter bandwidth necessary to achieve a desired bandwidth (and 
therefore range resolution) for arbitrary waveforms. It should 
be noted, however, that the equality only holds for the LFM 
chirp, which spends an equal amount of time (and thus power) 
in each of the frequencies due to its linear frequency sweep. 
Different waveforms that occupy some frequencies longer than 

∆ f

∆F

τcomp

τ

Figure 16-13. The ratio of uncompressed pulse width, τ, to 
compressed pulse width, τcomp, equals the ratio of the total change 
in frequency over the pulse width, ΔF, to minimum resolvable 
frequency difference, Δf.



Not 
for

 re
pro

du
cti

on

	 Chapter 16: Pulse Compression and High-Resolution Radar    9

others or employ a weighting across frequencies may require a 
higher bandwidth to achieve the same compressed pulse width 
as the LFM.

To get a feel for the relative values involved for LFM chirp, 
consider a couple of representative examples.

•	 Using LFM to provide the same compression as in the 8-chip 
matched filter discussed earlier, τ/τcomp = 8. If the original 
pulse is 1 µs, the range resolution has now improved to 
18.75 m. This would separate aircraft targets except for very 
tight formations of small planes.

•	 It is assumed that in order to provide adequate “energy on 
target,” the width of a radar’s transmitted pulse must be 
τ = 10 µs. To provide the desired range resolution of 1.5 m, 
a compressed pulse width of τcomp = 0.01 µs is required. 
Therefore the pulse compression ratio must be

	

τ
τ comp

= =10
0 01

1000
.

To achieve a compressed pulse width of 0.01 µs (10−8 s), the 
change in transmitter frequency, ΔF, over the duration of each 
transmitted pulse must be 1/10−8 = 108 Hz, or a bandwidth of 
100 MHz.

Since the duration of the uncompressed pulse is 10 µs (10−5 s), 
the rate of change of the transmitter frequency (the chirp rate) 
will be 108/10−5 = 1013 Hz/s, or 10,000 GHz/s. This arrangement 
equates to a total linear frequency modulation excursion of 
100 MHz over the duration of the pulsed waveform.

Incidentally, these values explain why stretch processing is prac-
tical only for relatively narrow range intervals. The ranging time 
for an interval of 100 km, for instance, is 13.3 × 50 = 665 µs. If the 
receiver local-oscillator frequency is shifted at a rate of 10 GHz/s 
throughout that time (see Figure 16-14), the total frequency shift 
would be 10,000 × 620 × 10−6 = 6.65 GHz. Such a large shift was 
deemed impractical in previous editions of this book and is only 
now beginning to enter the realm of possibility.

LFM Ambiguity Function. LFM allows very large compression 
ratios to be achieved with a relatively simple implementation. 
To assess the performance capability of LFM, consider its delay 
and Doppler characteristics that were illustrated via the ambi-
guity function in Figures 16-5 and 16-8.

One disadvantage of LFM is the high sidelobes that occur in 
the range dimension. These high sidelobes have driven the 
development of alternative waveforms and filtering strategies.

Another possible disadvantage is the ambiguity that occurs 
between range and Doppler (the range–Doppler ridge), shown 
in Figure 16-8. If an echo possesses a sufficient Doppler shift, 
it will also appear to be shifted in range, thereby limiting the 
ultimate accuracy for which true range may be determined. 
However, this Doppler tolerance also allows for simpler receiver 

Freq
f

τcomp = 0.01 µs

∆F = 108 Hz

∆f ∆F

∆f

∆t

∆t

τ = 10 µs

= =τ
108

10 × 10–6

6.2 GHZ

620 µs
(50 nmi)

Time

Figure 16-14. If stretch processing is used over a 100 km 
range interval to decode a 10 µs pulse modulated for a 1000:1 
compression ratio, the receiver local oscillator would have to be 
swept over 6.65 GHz.
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processing by precluding the need for a bank of matched filters 
tuned to different possible Doppler frequencies.

Amplitude Weighting. A well-known approach to reduce range 
sidelobes for LFM is to apply an amplitude weighting to the 
waveform that reduces the power in the regions nearer the 
ends of the pulse. Due to the frequency-swept nature of LFM, 
this weighting results in a deemphasizing of the frequencies 
near the extremities of the bandwidth, which results in lower 
sidelobes in the time domain due to the relationship between 
time and frequency (from Chapter 6).

The trade-off for this significant reduction in range sidelobes is 
reduced transmit power, which directly impacts detection sen-
sitivity. This weighting can also cause a degradation in range 
resolution due to reduced power in the outer frequencies, 
which is essentially a reduction in bandwidth. A typical com-
promise is to allow the resolution size to increase by approxi-
mately 50%, which enables sidelobe levels to be around −35 to 
−40 dB or less.

From an implementation standpoint, weighting the transmit-
ted pulse may also be prohibitive if high-efficiency, nonlinear 
amplification is required.

A common compromise is to transmit the standard LFM wave-
form while applying a receive filter that is weighted. This form 
of mismatched filtering has the advantage of still enabling the 
maximum power on transmit as well as power-efficient non-
linear amplification. The trade-off is a small mismatch loss 
between the waveform and filter that is acceptable for many 
radar applications.

16.3 Phase Modulation

In this type of coding the waveform is represented as a discrete 
sequence of increments, with each increment corresponding to 
one from a set of phase values modulated onto a subpulse (or 
chip). The set of possible phase values is often referred to as 
the phase constellation. For practical reasons, it is often desir-
able for the nature of the subpulse shape to provide continuous 
transitions between adjacent subpulses.

Binary Phase Modulation. The simplest form of phase modu-
lation employs a constellation of two opposite phase values 
(usually 0° and 180°) that are modulated onto a subpulse. The 
radio frequency phase of certain subpulse segments is shifted 
by 180° (or −1), according to a predetermined binary code. The 
subpulse is comprised of a multiple number of wavelengths of 
the carrier frequency.

Figure 16-15 illustrates an exemplary three-segment code. (So 
you can readily discern the phases, the wavelength has been 
arbitrarily increased to the point where each segment contains 
only one cycle.)

τ

0° 0° 180°

Figure 16-15. Binary phase coding of a transmitted pulse. The 
pulse is marked off into segments and the phases of certain 
segments (here, the third) are reversed.
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A common shorthand method of indicating the coding is to 
represent the segments with + and − signs. An unshifted seg-
ment (0°) is represented by a + sign and a shifted segment 
(180°) by a − sign. The signs making up the code are referred 
to as digits. The number of digits indicates the pulse compres-
sion ratio of the code.

The received echoes are passed through a tapped delay line 
(Figure 16-16) that provides a time delay exactly equal to the 
duration of the uncompressed pulse, τ. The delay line may be 
implemented either with an analog device or digitally. Clearly 
the tapped delay line for the binary-coded waveform is an 
implementation of the matched filter previously shown in 
Figures 16-3 and 16-4.

Like the transmitted pulse, the delay line is divided into seg-
ments. An output tap is provided for each segment. The taps 
are all tied to a single output terminal. At any instant, the sig-
nal at the output terminal corresponds to the sum of whatever 
segments of a received pulse currently occupy the individual 
segments of the line.

Now, in certain taps, 180° phase reversals are inserted. Their 
positions correspond to the positions of the phase-shifted seg-
ments in the transmitted pulse. Thus when a received echo 
has progressed to the point where it completely fills the line, 
the outputs from all of the taps will be in phase (Figure 16-17). 
Their sum will then equal the amplitude of the pulse times the 
number of segments it contains.

To see step by step how the binary-coded pulse is compressed, 
consider a simple three-segment delay line and the three-digit 
code, illustrated in Figure 16-15.

Suppose the echo from a single-point target is received. Initially 
the output from the delay line is zero. When segment 1 of the 
echo has entered the line, the signal at the output terminal cor-
responds to the amplitude of this segment (Figure 16-18). Since 
its phase is 180°, the output is negative: −1.

An instant later, segment 2 has entered the line. Now the output 
signal equals the sum of segments 1 and 2. Since the segments 
are 180° out of phase, however, they cancel: the output is 0.

When segment 3 has entered the line, the output signal 
is the sum of all three segments. At this point segment 1 
has reached the tap containing the phase reversal. The out-
put from this tap is, therefore, in phase with the unshifted 
segments 2 and 3 such that the combined output of the 
three taps is three times the amplitude of the individual 
segments: +3.

As segments 2 and 3 pass through the line, this process con-
tinues. The output drops to 0, then becomes −1, and finally 
returns to 0 again.

Delay Line

Received Pulse
R

–+ +
τ τ

Figure 16-16. Received pulse echoes are passed through a tapped 
delay line filter. A separate tap is provided for each segment of the 
pulse. Here, the third tap is reversed R to represent a 180° phase 
shift.

Delay Line

R

–

+++

+ +

τ

Figure 16-17. The phase reversal ® is placed so that when a pulse 
completely fills the delay line, outputs from all taps will be in phase.
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Figure 16-18. Step-by-step progress of a three-digit binary phase 
modulated pulse through a tapped delay line.
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A somewhat more practical example is shown in Figure 16-19. 
This code has seven digits. Assuming no losses, the peak 
amplitude of the compressed pulse is seven times that of the 
uncompressed pulse, and the compressed pulse is only one-
seventh as wide.

To see why the code produces the output it does, transfer 
the code to a sheet of paper and slide it across the delay line 
plotted in Figure 16-20, digit by digit, noting the sum of the 
outputs for each position. (A minus sign, −, over a tap with 
a reversal ® in it becomes a +, while conversely the reversal 
of a + becomes a −.) You should obtain the output shown in 
the figure.

Barker Codes. Ideally, for all positions of the echo in the line—
except the central one—the collection of 0° or 180° outputs 
would cancel and there would be no range sidelobes.

One set of codes, called the Barker codes, comes very close 
to meeting this goal (Figure 16-21). Two of these codes have 
been used in the above examples. As has been seen, they 
produce sidelobes whose amplitudes are no greater than the 
amplitude of the individual code segments. Consequently the 
ratio of mainlobe amplitude to sidelobe amplitude, as well as 
the pulse compression ratio, increases with the number of seg-
ments into which the pulses are divided—that is, the number 
of digits in the binary code.

Unfortunately, the longest Barker code contains only 13 digits. 
Arbitrary binary codes can be made practically any length, 
but their sidelobe characteristics, though reasonably good, do 
not possess this desirable property of the Barker codes. Such 
codes require an exhaustive computer search and are called 
minimum peak sidelobe codes.

Complementary Codes. It turns out that the four-digit Barker 
code has a special feature that enables us to build codes of 
greater length and even eliminate the sidelobes altogether 
(under certain conditions). This feature arises because the four-
digit code, as well as the two-digit code, has a complementary 
form. The sidelobe structures produced by the complementary 

++++ –– –

7 6 5 4 3 2 1

τ

Figure 16-19. A seven-digit binary phase code.

Delay Line

12 10 8 6 4 2 0
–1

14

R

+ + + +– – –

RR 1
2
3
4
5
6
7

Figure 16-20. Output produced when a seven-digit binary phase 
code is passed through a tapped delay line with phase reversals in 
the appropriate taps.
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Note:  Plus and minus signs may be interchanged
(  changed to  ); order of digits may be reversed
(  changed to  ). Codes in parentheses are complementary codes.

– – –
– –

–
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– – – –

– –
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–

Figure 16-21. Barker codes come very close to the goal of 
producing no sidelobes. However, the largest Barker code contains 
only 13 digits.
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forms have opposite phases (Figure 16-22). Therefore, if suc-
cessive transmitted pulses are alternately modulated with the 
two forms of the code and filter each with their corresponding 
delay line, the returns from successive pulses can be added 
such that the sidelobes cancel.

Furthermore, by chaining the complementary forms together 
according to a certain pattern, codes of much greater length 
can be built. As illustrated in Figure 16-23, the two forms of the 
four-digit code are just such combinations of the two forms of 
the two-digit code, and these are just such combinations of the 
two fundamental binary digits, + and −.

Unlike the unchained Barker codes, the chained codes (also 
called nested codes) produce sidelobes having amplitudes 
greater than one. However, since the chains are complemen-
tary, these larger sidelobes—like the others—cancel when suc-
cessive pulses are added (at least in the absence of Doppler).

Doppler Sensitivity. Compared with LFM chirp, coded modula-
tions can be much more sensitive to Doppler frequency shift. If 
all segments of a phase-coded pulse are to add constructively 
when the pulse is centered in the delay line, while cancelling 
when it is not, very little additional shift in phase over the 
length of the pulse can be tolerated.

A Doppler shift of 10 kHz amounts to a phase shift of 
10,000 × 360°/s, or 3.6°/μs. If the uncompressed pulse width is 
as much as 50 µs (Figure 16-24), this shift will itself equal 180° 
over the length of the pulse, and performance will deteriorate. 
For the scheme to be effective, either the Doppler shifts must 
be comparatively small or the uncompressed pulses must be 
reasonably short.

One way to contend with phase-coding sensitivity to Doppler 
is through “Doppler tuning,” in which a bank of Doppler-
shifted versions of the delay line matched filter outputs are 
applied. While this approach increases the overall hardware 
(analog filtering) or computational (digital filtering) require-
ments, it does have the benefit of avoiding the range–Doppler 
ambiguity problem of the LFM chirp.

The sidelobe cancellation property of complementary code 
sets is very sensitive to pulse-to-pulse Doppler shift. The sid-
elobes do not perfectly subtract when Doppler is present, so 
residual sidelobes emerge.

Polyphase Codes. Phase coding is not limited to just two incre-
ments (0° and 180°). Codes with phase constellations comprised 
of more than two possible values are collectively referred to as 
polyphase codes. Here a particular example is considered and 
is taken from a family called Frank codes.

The fundamental phase increment ϕ for a Frank code is estab-
lished by dividing 360° by the number of different phases in 
the constellation, P. The coded pulse is then built by chaining 
together P groups of P segments each. The total number of 
segments in a pulse, therefore, equals P2.

B

A A + B

R R R

R

+ + +

+

–

– – –

8 7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0

Figure 16-22. Echoes from complementary phase coding received 
from the same target in alternating pulses. When echoes are added, 
the time sidelobes cancel.
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– – ––+ + + +
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Figure 16-23. How complementary codes are formed. The basic 
two-digit code is formed by chaining a basic binary digit (+) to its 
complement (−). A complementary two-digit code is formed by 
chaining a basic binary digit (+) to its complement with the sign 
reversed (+). The basic four-digit code is formed by chaining a basic 
two-digit code (+ −) to its complementary two-digit code (+ +). A 
complementary four-digit code is formed by chaining a basic two-
digit code (+ −) to its complementary two-digit code with the sign 
reversed (− −), and so on.
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Figure 16-24. The reduction in peak output of a tapped delay line for 
a 50 µs, phase-coded pulse resulting from a Doppler shift of 10 kHz.
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In a three-phase code (Figure 16-25), for example, the funda-
mental phase increment is 360° ÷ 3 = 120°, making the phases 
0°, 120°, and 240°. The coded pulse consists of three groups of 
three segments—a total of nine segments.

Group 1 Group 2 Group 3

Phases are assigned to the individual segments according to 
two simple rules: (1) the phase of the first segment of every 
group is 0°, that is, 0° ___ ___, 0° ___ ___, 0° ___,___; and (2) 
the phases of the remaining segments in each group increase 
in increments of

ΔΦ = (G − 1) × (P − 1) × ϕ°,

where

G = group number

P = number of phases

ϕ = basic phase increment.

For a three-phase code (P = 3, ϕ = 120°, P − 1 = 2), then 
ΔΦ = (G − 1) × 2ϕ. So the phase increment in Group 1 is 0°, the 
phase increment for Group 2 is 2ϕ, and the phase increment 
for Group 3 is 4ϕ.

Written in terms of ϕ, the nine digits of the code for P = 3 are

	 Group 1	 Group 2	 Group 3
	 0, 0, 0	 0, 2ϕ, 4ϕ	 0, 4ϕ, 8ϕ

Substituting 120° for ϕ and dropping multiples of 360°, the 
code becomes

	 Group 1	 Group 2	 Group 3
	 0°, 0°, 0°	 0°, 240°, 120°	 0°, 120°, 240°

Echoes are decoded by passing them through a tapped delay 
line (or the digital equivalent) in the same way as binary phase-
coded echoes (Figure 16-26). The only difference is, the phase 
shifts in the taps have more than one value.

For a given number of segments, a Frank code provides the same 
pulse compression ratio as a binary phase code and the same 
ratio of peak amplitude to sidelobe amplitude as a Barker code. 
Yet, by using more phases (increasing P), the codes can be made 
of the greater length, P2. As P is increased, however, the size 
of the fundamental phase increment decreases, making perfor-
mance more sensitive to externally introduced phase shifts (e.g., 
transmitter distortion) and imposing more severe restrictions on 
uncompressed pulse width and maximum Doppler shift.

Frank codes are an example of a class of codes in which the 
discrete phase sequence can be viewed as a sampled version 
of the LFM chirp. Other such codes are the Zadoff-Chu code, 
the “P” codes, and Golomb codes. Like the minimum peak 

P = 3

360°
P = 120°

2

1

0

120°

2 × 120°

φ =  

Figure 16-25. Phase increments for a Frank code in which the 
number of phases P is three.
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sidelobe codes for the binary phase constellation, it is also pos-
sible to perform an exhaustive computer search for polyphase 
codes of arbitrary length and phase constellation.

While binary codes are in widespread use, the implementa-
tion of polyphase codes is more limited. The reason is that 
binary codes can be implemented in a phase-continuous 
manner in the transmitter while, until very recently, poly-
phase codes could not. These phase discontinuities at the 
chip transitions produce spectral spreading and can also limit 
the fidelity with which a polyphase-coded waveform can be 
generated by a practical transmitter. However, the design 
freedom provided by polyphase codes serves as the basis 
for new emerging radar capabilities. This topic is discussed 
further in Chapter 45.

16.4 Summary

Since radar transmitters are peak power limited, pulse compres-
sion provides the means to achieve sufficient energy on target 
for detection while enabling the requisite range resolution. Pulse 
compression comprises transmission of a modulated waveform 
and receiver filtering to compress the resulting echoes in range.

The most commonly used pulse compression techniques are 
the LFM chirp and binary phase coding.

With LFM, the frequency of each transmitted pulse is continu-
ously increased or decreased. Applying the receive filter that is 
matched to the waveform results in a compressed pulse width 
of 1/ΔF, where ΔF is the total change in frequency (i.e., the 
bandwidth) of the waveform. The LFM range sidelobes may be 
reduced by amplitude weighting the receiver matched filter at a 
cost of reduced range resolution and mismatch loss.

When only a narrow range swath is of interest, the LFM chirp 
can be decoded using stretch processing, whereby range is 
converted to frequency in the receiver. Differences in fre-
quency are resolved by a bank of tuned filters implemented 
with the efficient fast Fourier transform. With the LFM wave-
form and stretch processing, very large compression ratios 
and fine range resolution can be achieved. The LFM is rather 

Delay Line

(Received Pulse)

Time
3 6 9 12 15 18

3
4
5
6
7
8
9

0

0
0

0 0

0 = 0° Shift

2 = 2 × 120°
1 = 1 × 120°

0 01

11

1

1

2

τ τ

2

2

22

Note: Numerals indicate phase shifts in multiples of 120°

Figure 16-26. Processing of Frank codes is similar to that of binary codes. Phase shifts introduced in taps complement shifts in corresponding 
segments of the coded pulse. If the phase of a segment is shifted by 1 × 120°, the corresponding tap adds a shift of 2 × 120°, making the total shift 
when the pulse fills the line equal 3 × 120° = 360°. This phase relationship is identical to the matched filter.
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insensitive to Doppler frequency shift, though such a shift pro-
duces an ambiguity in range.

In binary phase modulation, each pulse is marked off into seg-
ments, with the phase of certain segments reversed. Received 
echoes are passed through a tapped delay line having phase 
reversals in taps corresponding to those in the code. Binary 
codes are more sensitive to Doppler frequency shift than the 
LFM chirp.

Barker codes represent a form of binary phase modulation in 
which the mainlobe-to-sidelobe ratio equals the pulse–com-
pression ratio, though the longest Barker code is only 13 digits.

Sidelobes may be eliminated by alternately transmitting com-
plementary codes that are obtained from chained Barker codes. 
However, this property requires little to no Doppler shift.

Polyphase (e.g., Frank) codes can also be used, but these are 
more sensitive to Doppler shift than binary codes, due to 
smaller phase increments. Polyphase codes tend to produce 
phase discontinuities, which results in spectral spreading and 
sensitivity to transmitter distortion.

Further Reading

1.	 N. Levanon and E. Mozeson, Radar Signals, John Wiley & 
Sons, 2004.

2.	M. A. Richards, J. A. Scheer, and W. A. Holm, eds., Principles 
of Modern Radar: Basic Principles, SciTech, 2010, chap. 20.

Test your understanding

1.	 To achieve a range resolution of 0.5 m 
with a 20 µs pulse, determine the 
required chirp rate and the associated 
pulse compression ratio.

2.	 Using the process described in Figure 
16-18, determine the tapped delay line 
output for the following binary codes:

	 a. � Length 11 Barker code as defined in 
Figure 16-21

	 b. � [+ + + − − − + − − + +] (Barker 11, but 
with the last digit flipped)

3.	 Using the tapped delay line outputs 
from problem 2, determine the largest 
sidelobe value relative to the mainlobe. 
This ratio is known as the PSL.

4.	 For P = 4 phase values, determine the 
length 16 Frank code and compute its 
output from the tapped delay line.
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