Contents

	About the editor Preface			
Pa				
1	The Sha	3		
	1.1	Introduction	3	
	1.2	Why spectrum access is so vital	5	
	1.3	Tolerating versus cooperating	7	
		1.3.1 Achieving greater tolerance	8	
		1.3.2 Living in harmony	10	
	1.4	Scoping the spectrum-sharing problem space	12	
		1.4.1 Spectral perspective	12	
		1.4.2 Power perspective	13	
		1.4.3 Spatial perspective	14	
		1.4.4 Temporal perspective	15	
		1.4.5 Doppler perspective	18	
		1.4.6 Modulation and coding perspective	19	
		1.4.7 Polarization perspective	21	
	1.5	1.4.8 Separability	22	
		Conclusions nowledgments	23	
		23		
	Rei	erences	24	
2		spectrum crunch – a radar perspective h Griffiths	27	
	2.1	00	27	
	2.2	The radar spectrum environment	29	
	2.3	Signal spectra	31	
		2.3.1 Spectra of practical emissions	31	
		2.3.2 Radar emissions	31	
		2.3.3 Radar transmitters	33	
	2.4	Spectrum allocation	35	
		2.4.1 Competition for spectrum	35	
		2.4.2 Spectrum regulation	35	

vi Radar and communication spectrum sharing

	2.5	Radar	interference to other users	38
		2.5.1	Radar interference to other radars	38
		2.5.2	Radar interference to other systems	39
		2.5.3	WiMAX and LTE communication systems	39
	2.6	Interfe	rence to radar by other users	40
	2.7	Techno	ology developments	42
		2.7.1	Passive bistatic radar	42
		2.7.2	Waveform diversity	43
		2.7.3	Bio-inspired approaches	45
		2.7.4	Cognitive radar	45
	2.8	Conclu	isions	46
	Ack	nowledg	gements	46
	Refe	erences		47
3	Spec	etrum s	haring between radar and small cells	51
	-		a, Francisco Paisana, and Nicola Marchetti	
	3.1	Radar	systems—the incumbents	51
		3.1.1	Classification of radar systems	52
		3.1.2	Radar environmental factors	56
	3.2	Curren	nt regulation on radar spectrum sharing	60
		3.2.1	5150–5925 MHz band	60
		3.2.2	3550–3700 MHz band in the United States	63
	3.3	Spatial	l sharing techniques	67
		3.3.1	Geolocation database (GL-DB)	68
		3.3.2	Spectrum sensing and DFS	70
		3.3.3	Cooperative spectrum sensing	72
		3.3.4	Radio environment map (REM)	73
	3.4	Beyon	d traditional sharing schemes	74
			Temporal sharing	74
			Cognitive beamforming	77
		3.4.3	Coexistence through cooperation and codesign	82
			Open challenges	83
	3.5		dary radio access technologies	84
			LTE in unlicensed spectrum	84
			Licensed LTE	86
			WLAN	87
	3.6	Conclu		87
			ng ahead	88
	Refe	erences		89
4		ar spect ak Sande	trum sharing: history, lessons learned, and ways forward	97
	4.1	Introdu	action	97
	4.2	Early r	adar development	98
		4.2.1	The reason behind higher radar frequencies	99
		4.2.2	Radar spectrum band development	100

	4.2.3	Radars need quiet spectrum to work well	102
	4.2.4	Why frequency bands allocated to radars require large	
		bandwidths	103
	4.2.5	Why radars have tended to have their own spectrum	
		allocations	103
4.3	Regula	tion of radar spectrum in the United States	
	-	orldwide	104
4.4	The ad	vent of radar band sharing	104
4.5		101: essential knowledge for spectrum sharing	105
	4.5.1	Specification of what the radar must do	105
	4.5.2	*	
		losses	105
	4.5.3	The radar antenna	106
	4.5.4	Radar wave propagation to and from a target	106
	4.5.5	Peak power the radar must transmit	107
	4.5.6	Radar pulse repetition rate	107
	4.5.7	Radar pulse echo integration for effective detection	108
	4.5.8	Radar beam-scanning interval	108
4.6	Radar	receiver susceptibility to interference in spectrum-sharing	
	scenar	ios	108
4.7	Detect	ing our hypothetical radar for DFS purposes	109
	4.7.1	The DFS spectrum-sharing concept	111
	4.7.2	Uniqueness of DFS for real-world spectrum sharing	111
	4.7.3	Timeline of international (ITU-R) and U.S. national	
		development of DFS	112
	4.7.4	DFS introductory efforts, 1996	112
	4.7.5	Initial FCC R&O and MO&O policy statements,	
		1997–1998	112
	4.7.6	WRC-03 and Recommendation M.1652, Circa 2003	113
	4.7.7	Determination of protection criteria, late 1990s through	
		mid-2000s	113
	4.7.8	First DFS implementation steps in the United States,	
		2003–2004	114
	4.7.9	DFS certification testbed development, 2005–2006	114
		DFS certification requirements developed, 2005–2006	115
	4.7.11	DFS compliance testbed constructed and early testing,	
		2005–2006	115
		Initial DFS deployment experience, 2006–2009	116
		Ongoing DFS deployment experience, 2010–present	117
4.8		cal assumptions of DFS	118
	4.8.1	Assumption: radars can be detected while U-NII message	
	100	traffic is occurring	119
	4.8.2	Assumption: detection of radar signals by APs protects	
	100	radars from all network transmissions	119
	4.8.3	Assumption: radar-detection thresholds are adequate to	
		protect radars from harmful interference	119

		4.8.4	Assumption: radar waveform testing is sufficiently robust	120	
		4.8.5	Assumption: firmware updates installed in DFS units after		
			initial certification will not cause DFS to be impaired or		
			disabled	121	
		4.8.6	Assumption: DFS-equipped U-NIIs will be		
			properly installed and operated	121	
		4.8.7	Ongoing need for enforcement in DFS bands	122	
	4.9	More 1	essons learned	124	
	4.10	Challe	nges for manufacturers and vendors	125	
		4.10.1	Challenges to the communications community in		
			understanding radar systems	125	
		4.10.2	Difficulty of detecting general, not specific,		
			radar waveforms	126	
		4.10.3	Lack of industry testbeds for DFS	126	
		4.10.4	Development of the NTIA testbed and its use by industry		
			and FCC	127	
	4.11	Challe	nges for development of DFS test-and-certification		
		protoc	ols	128	
		4.11.1	Advantages: working from a blank slate	128	
		4.11.2	Disadvantages: areas of developmental doubt and		
			uncertainty	129	
	4.12	Interfe	rence cases after initial DFS deployment	130	
		4.12.1	Identification of interfering DFS-equipped devices at San		
			Juan	130	
	4.13	Ongoin	ng DFS spectrum sharing maintenance	132	
		4.13.1	Continuing monitoring of DFS devices	132	
		4.13.2	Consideration of more complex future radar waveforms	132	
	4.14	Lookir	ng forward to future spectrum sharing	133	
	Refe	rences		133	
_	_				
5			se, congestion, issues, and research areas at	135	
	radio-frequencies				
	Eric L. Mokole, Tapan K. Sarkar, Miguel Angel Lagunas, and				
	Mag	dalena	Salazar Palma		
	5.1	Introdu	action	135	
	5.2	Impact	s of EM spectral interactions between communication and		
			ystems	138	
			Impacts of radars on communication systems	139	
		5.2.2	Impacts of communication systems on radars	141	
	5.3		spectrum-mitigation efforts	144	
		5.3.1	Selected efforts since 1998	144	
		5.3.2	Current efforts	146	
	5.4		sted research areas for radar–communications	2	
	- / -		ll harmony	147	
		5.4.1		147	
			5		

		5.4.2	Radar waveforms	151	
		5.4.3	Innovative antenna elements and arrays	152	
		5.4.4	Innovative radar receivers	152	
		5.4.5	Propagation	154	
		5.4.6	Adaptive and cognitive emission control	155	
		5.4.7	Radar-communications co-design	156	
	5.5	Some	essential EM theory for communications and radar	157	
		5.5.1	Physically realizable waveforms	157	
		5.5.2	Notions of far field and antenna pattern for		
			communication cell sizes	158	
		5.5.3	Maxwellian-based use of capacity	161	
			Antenna pattern and placement for communications	162	
			Essential antenna properties for system design	163	
	5.6		g observations	164	
		5.6.1	Radar-communications spectral harmony	164	
	Refe	erences		167	
Pa	rt II	Syste	ms engineering perspectives		
6	-	•	efficient communications and radar	177	
			ins, Shannon D. Blunt, Patrick M. McCormick,		
	and	Brando	n Ravenscroft		
		Introd		177	
	6.2		nunication spectral efficiency	177	
			Basic linear modulation schemes	178	
			Detection in additive white Gaussian noise	179	
			The waveform model for linear modulations	179	
			Orthogonal frequency division multiplexing	184	
			Continuous phase modulation	185	
		6.2.6	Channel capacity and the fundamental limits on spectrum efficiency	189	
	6.3	Dodor	spectral efficiency	189	
	0.5	6.3.1		190	
		6.3.2	Designing for radar spectral containment: holistic system	191	
		0.5.2	perspective	196	
		6.3.3	Some practical aspects of sharing radar spectrum	201	
	6.4	0.00.00	usions and looking ahead	201	
		erences		207	
7	Pass	ive hist	atic radar for spectrum sharing	211	
,	Hugh Griffiths and Chris Baker				
	7.1	Introd		211	
	7.2		c radar principles	213	
		7.2.1	Bistatic radar geometry	213	
		7.2.2	Bistatic radar equation	215	

		7.2.3	Target signatures	216
		7.2.4	The ambiguity function in bistatic radar	218
	7.3		e bistatic radar illuminators	218
		7.3.1	Power density incident upon a target	219
		7.3.2	Coverage	219
		7.3.3	Waveforms	220
		7.3.4	Orthogonal frequency division multiplexing	222
			Long-term evolution	224
	7.4	Passiv	e bistatic radar techniques	225
		7.4.1	Direct signal suppression	225
		7.4.2	Processing gain and performance prediction	227
		7.4.3	Target detection, localisation and tracking	227
	7.5		e bistatic radar and the spectrum problem	229
		7.5.1	PBR in air traffic management	229
	7.6	Summ	ary and conclusions	230
	Ack	nowledg	gements	231
	Refe	erences	-	231
8	Svm	nbiosis f	for communications, broadcasting and sensor systems	
			e space TV band	235
		hael R.	1	
	8.1	Introd	uction	235
	8.2	The w	hite space standard and its evolution	237
			A historical perspective	237
			White space overview	238
			Key WRAN radiator parameters	240
	8.3		orks of sensors and a taxonomy	241
			Early networks of sensors: radar	241
			A proposed taxonomy for networks of sensors	242
			Parameter extraction with sensor networks	243
		8.3.4	Applications of EM sensor networks	248
	8.4		nensal implementation of a WS sensor	251
			FM band commensal aircraft sensing	252
	8.5		listic implementation of a WS sensor	253
	8.6		and frequency alignment	255
		8.6.1	Necessity of time/frequency alignment	256
		8.6.2		256
		8.6.3	SONET and other network technologies	256
		8.6.4	GPS disciplined oscillators	257
		8.6.5	White Rabbit	261
	8.7		usions and looking ahead	263
	- • •	8.7.1	Summary	263
		8.7.2	Looking ahead	263
	Refe	erences	-	264

9	GPS	interop	dar sensing, data communications, and erability via software-defined OFDM architecture natyuk, Yu Tong (Jade) Morton, and Saba Mudaliar	269	
	9.1	•	iew of OFDM in radar and communications	269	
	9.2		n of a UWB software-defined system based on OFDM	20)	
	2.2	9.2.1 9.2.2	General considerations for an UWB SDRS design Transmit power considerations for indoor UWB OFDM SDRS	271 274	
	9.3	Dual u	use of system bandwidth and transmit power via OFDM	274	
	1.5		communication signals	276	
		9.3.1	Radar-embedded communications and radar/	270	
			communication signals	276	
		9.3.2	Example: OOK OFDM signal performance in radar and	-,	
		21012	communications	277	
	9.4	Simult	aneous sensing and covert, ad-hoc asynchronous	_ , ,	
	···		unications with OFDM	282	
		9.4.1	Randomization of radar/communication signals for		
			communications	282	
		9.4.2	Randomization of radar/communication signals using		
			stochastic sequences	285	
		9.4.3	Cross-range compression for SAR with randomized	200	
		21.110	OFDM signals	289	
	9.5	In-ban	d co-existence of UWB OFDM radar signals and	-07	
	2.0		tion satellite signals	295	
		9.5.1	System and simulation setup for UWB radar and GPS	_,,,	
			receiver co-design	296	
		9.5.2	÷	298	
		9.5.3	UWB OFDM and GPS coexistence modeling results	300	
	9.6		ig ahead: conclusions and perspectives	304	
		rences		305	
	itere	lences		505	
10			multi-interference suppression for wideband	311	
	radar/communication receivers				
			nez-García, Dimitra Psychogiou, Zhengyu Peng, Muñoz-Ferreras, Changzhi Li, and Dimitrios Peroulis		
	10.1	Introdu	action	311	
	1011	10.1.1	Wideband receiver architectures for radar and	011	
		101111	communication systems	313	
		10.1.2		315	
	10.2		tudy: impact of narrowband interference on a wideband	515	
	10.2		eceiver	316	
		10.2.1	Coherent FMCW radar	316	
		10.2.1	Impact and mitigation of CW interference on FMCW	510	
		10.2.2	radar	319	