Contents

	About the editors Foreword		
1	Introduction Alessio Balleri, Hugh Griffiths and Chris Baker		
	1.1 1.2	Motivations Scope of the book	1 2
2	echo	onar-inspired signal processing and acoustic imaging from locating bats es A. Simmons, Jason E. Gaudette and Michaela Warnecke	5
	2.1	 Introduction 2.1.1 Engineered vs biological solutions to design 2.1.2 Varieties of biosonar 2.1.3 Technical challenges 	5 6 8 9
		 Computational model of biosonar: spectrogram correlation and transformation (SCAT) receiver 2.2.1 Time-frequency representation in FM biosonar 2.2.2 Determination of echo delay – target range images 2.2.3 Incorporation of the echo spectrum – focused target-shape images on the range axis 2.2.4 Defocusing of images for suppressing clutter Principles of biosonar imaging by SCAT nowledgements 	15 15 19 22 27 30 31 32
3		anced range resolution: comparison with the matched filter in Georgiev, Alessio Balleri, Andy Stove and Marc W. Holderied	37
	3.1 3.2	Introduction Description of the spectrogram correlation and transformation model 3.2.1 Cochlear block 3.2.2 Temporal block 3.2.3 Spectral block 3.2.4 Model output	37 39 40 41 42 42

vi Biologically-inspired radar and sonar: lessons from nature

	3.3	The baseband spectrogram transformation receiver	42
	3.4	Response of the BSCT to two closely spaced ideal reflectors	45
		3.4.1 Central lobe suppression	48
	3.5	Experimental setup and data collection	50
		3.5.1 General settings and equipment	50
		3.5.2 Simulations	51
		3.5.3 Phantom targets	51
		3.5.4 Physical targets	51
	3.6	Results	52
	3.7	Conclusion	58
	Refe	erences	58
4		-coupled sonar systems inspired by bat echolocation <i>es F.C. Windmill and Francesco Guarato</i>	61
	4.1	Introduction	61
	4.2		62
	4.3		02
		receivers	65
		4.3.1 Biomimetic emitters	67
		4.3.2 Biomimetic receivers	68
	4.4	1 5	73
		4.4.1 Bat-inspired signal processing (cochlea models,	
		discrimination of closely spaced objects and estimation	
		of time delays using chirps, bat-inspired waveforms,	
		target identification)	83
	4.5	Conclusions	84
	Refe	erences	85
5		lysis of acoustic echoes from bat-pollinated plants	89
	Ales	sio Balleri, Hugh Griffiths, Chris Baker and Marc Holderied	
	5.1		89
	5.2		92
	5.3		94
		5.3.1 Power reflection as a potential cue	97
	5.4	5	98
	5.5		104
	Refe	erences	105
6		biosonar arms race between bats and insects mas R. Neil and Marc W. Holderied	109
	6.1	Introduction	109
	6.2	Bat biosonar	109
		6.2.1 Implementing the sonar equation	110
		6.2.2 Adaptive bat biosonar	111

	6.3	Prey defences	112
		6.3.1 Passive defences	112
		6.3.2 Acoustic decoys	114
		6.3.3 Active defences and ear evolution in insects	114
		6.3.4 Active responses to ultrasound in moths	118
		6.3.5 Defences in other insects	123
	6.4	Bat countermeasure to insect defences	125
		6.4.1 Allotonic frequency hypothesis	125
		6.4.2 Stealth aerial hawking	126
		Conclusion	128
	Refe	rences	128
7		ogically-inspired coordination of guidance and adaptive ated waveform for interception and rendezvous problems	137
		sio Balleri, Alfonso Farina and Alessio Benavoli	157
	7.1	Introduction	137
	7.2	Theoretical framework	138
		7.2.1 Gaussian linear chirp	140
		Two-dimensional case study	141
		Simulation results	143
		Conclusion	151
	Refe	rences	153
8		nitive sensor/processor system framework for	
	0	et tracking	155
		tine L. Bell, Chris Baker, Graeme E. Smith,	
	Joel	T. Johnson and Muralidhar Rangaswamy	
	8.1	Introduction	155
	8.2	Framework	157
		8.2.1 Cognitive sensor/processor system framework	157
		8.2.2 Cognitive single target tracking	159
		8.2.3 Cognitive MAP-PF single target tracking	163
		8.2.4 Summary	166
	8.3	Distributed sensor example	168
		8.3.1 Model	168
		8.3.2 Implementation	171
	0.4	8.3.3 Simulation results	171
	8.4	Software defined radar example	174
		8.4.1 Model	176
		8.4.2 Implementation	179
	0.5	8.4.3 Collected data results	179
	8.5	Conclusions	181
	8.6	Appendix A: Bayesian Cramér–Rao lower Bound	182
	кете	rences	183

9	The	biosonar of the Mediterranean Bottlenose dolphins: analysis	
	and	modelling of echolocation signals	189
	Mar	ia Greco and Fulvio Gini	
	9.1	Introduction	189
	9.2	Data acquisition	191
		9.2.1 The hydrophone	191
		9.2.2 The amplifier	192
		9.2.3 Digital card	192
	9.3	Biosonar model	193
	9.4	Signal estimation	196
		9.4.1 Exponential pulse	196
		9.4.2 Gaussian pulse	197
	9.5	Estimation results	199
		9.5.1 Exponential pulse	199
		9.5.2 Gaussian pulse	201
		9.5.3 Audio band	204
		Conclusions	206
	Refe	rences	206
10	Hun	an echolocation – spatial resolution and signal properties	209
		n Norman and Lore Thaler	
	10.1	Introduction and background	209
	10.2	Acoustic properties of human sonar emissions	210
	10.3	Environmental factors	212
	10.4	Localising objects in space	212
		10.4.1 Localising objects in depth (ranging): signal properties10.4.2 Localising objects in depth (ranging): spatial	212
		resolution of human echolocators	214
		10.4.3 Localising objects in the horizontal plane (azimuth):	
		signal properties	217
		10.4.4 Localising objects in the horizontal plane: spatial	
		resolution of human echolocators	217
		10.4.5 Localising objects in the vertical plane (elevation)	218
	10.5		219
	10.6	e	222
	Refe	rences	224
11	Pola	rization tensors and object recognition in weakly electric fish	229
	Will	am R.B. Lionheart and Taufiq K. Ahmad Khairuddin	
	11.1	Electrosensing in fish and electrical imaging by humans	229
	11.2	Algorithms for electrical imaging	231
	11.3	Polarization tensors	234
	11.4	Generalized polarization tensor	235

11.4 Generalized polarization tensor

	The second rank polarization tensor PT in electrosensing fish	236 237
	PT in metal detection by human technology	241
11.8	Conclusions	245
References		247
Postscrij	pt	251
Index	253	