Contents

Fo Ao No	orewo cknow otatio	rd /ledgments n	xiii xvii xix
Al	About the Editors		
1	Intr A. Fa	oduction to cognitive radar with an industrial point of view	1
	1.1	Introduction Why cognition in radar? The role of human operators	1
	1.2	and of a computer-based radar task scheduler	2
		1.2.1 Use of the phased-array antenna in radar systems	5
		1.2.2 Use of variable dwell time	5
		1.2.3 Use of variable data rate	5
		1.2.4 The system manager	6
	1.3	To what extent can today's phased-array radars be considered	
		cognitive?	15
	1.4	What's next	16
	1.5	Operational requirements	17
	1.6	Enabling key technologies: just a taste	20
	1.7	Adaptivity and brain	22
		1.7.1 Brain few basic notions	22
	1.8	Brain inspired radar design	26
	1.9	Conclusion	29
	Acknowledgments		31
	Refe	prences	32
2	Cog Simo	nitive radar inspired by the brain on Haykin, Yanbo Xue, and Peyman Setoodeh	37
	2.1	Introduction	37
	2.2	Fuster's paradigm of cognition	39
	2.3	Engineering perspective of cognition	40
	2.4	2.4 Perception–action cycle	
		2.4.1 Bayesian filtering for optimal perception in the receiver	42
		2.4.2 Shannon's entropy vs. Fisher information	45
		2.4.3 Posterior Cramér–Rao lower bound	46

		2.4.4	Sensitivity analysis	48
		2.4.5	Dynamic programming for control in the transmitter	49
	2.5	Memor	ry	51
		2.5.1	Perceptual memory	51
		2.5.2	Executive memory	51
		2.5.3	Working memory	52
	2.6	Attenti	on	53
	2.7	Intellig	gence	54
	2.8	Cyclic	-directed information flow	55
		2.8.1	Perceptual pathway	55
		2.8.2	Executive pathway	56
		2.8.3	How can we build on the directed information-flow graph	
			to better understand the role of memory in cognition?	57
	2.9	Experi	mental groundwork	58
		2.9.1	State-space model	58
		2.9.2	Construction of the two libraries	60
		2.9.3	Performance metric	60
		2.9.4	Track initialization	61
		2.9.5	Memory	61
	2.10	Experi	mental results: theoretical considerations	62
		2.10.1	Posterior Cramér–Rao lower bound	62
		2.10.2	Tracking accuracy	63
	2.11	Experi	mental results: practical considerations	67
	2.12	Conclu	ision	68
	Refe	rences		69
3	Cog	nitive ra	adar and its application to CFAR detection	
	and	receive	r adaptation	73
	A. De	e Maio, .	A. Farina, A. Aubry, V. Carotenuto, and L. Pallotta	
	3.1	Introdu	iction	73
	3.2	Existin	g examples of cognitive properties in modern radars	77
	3.3	Cognit	ive CFAR-processing techniques	77
	3.4	Exploi	ting multiple a priori spectral models for detection	82
	3.5	Selecte	ed reference list on cognitive radar	87
	3.6	Conclu	ision	88
	Refe	rences		89
4		nitive ra	adar waveform design for spectral compatibility	93
	л. De	<i>z IVIUIO</i> , .	л. тагта, А. Айогу, v. Carotenuto, ини L. Futtottu	-
	4.1	Introdu	iction	93
	4.2	System	and problem formulation	95
		4.2.1	System model	95
		4.2.2	Code design optimization formulation	97

		4.2.3 Cognitive spectrum awareness	98
	4.3	Solution algorithm and performance analysis	99
		4.3.1 Local design solution technique	102
	4.4	Conclusion	106
	App	endix A	107
	A.1	Waveform design algorithm for global interference requirements	107
	A.2	Waveform design algorithm for local interference requirements	109
	Refe	erences	112
5	Cog	nitive optimization of the transmitter–receiver pair	115
	<i>A</i> . <i>D</i>	e Maio, A. Farina, A. Aubry, V. Carotenuto,	
	and	L. Pallotta	
	5.1	Introduction	115
	5.2	System model and problem formulation	118
		5.2.1 System model	118
		5.2.2 The role of cognition for environmental awareness	119
		5.2.3 Code and receive filter bank optimization problem	
		formulation	122
	5.3	Joint transmit receive design: solution-technique and analysis	124
		5.3.1 Performance analysis	125
	5.4	Conclusion	132
	App	endix A	133
	Alte	rnating optimization procedure to jointly design transmit signal	100
	and	receive filter bank	133
	A.I	Filter bank optimization: solution to problem $\mathcal{P}_{w}^{(n)}$	135
	A.2	Radar code optimization: solution to problem $P_s^{(n)}$	135
	A.3	Iransmit-receive system design: optimization procedure	130
	Refe	erences	13/
6	Cog	nitive control theory with an application	141
	Meh	di Fatemi and Simon Haykin	
	6.1	Introduction	141
	6.2	The two-state model	142
	6.3	Formalism of the learning process in cognitive control	143
	6.4	Cognitive-control-learning algorithm viewed as a special case	
		of Bellman's dynamic programming	146
	6.5	Optimality vs. convergence-rate in online implementation	149
	6.6	Formalism of the planning process in cognitive control	149
		6.6.1 Predicting the entropic reward in a Gaussian environment	149
	0./	Structural composition of the cognitive controller	152
	0.8	6.8.1 Seenario 1: the impact of planning on cognitive control	153
		6.8.2 Scenario 2: comparison of learning curves of three	134
		different cognitive controllers	155
		amerent cognitive controllers	155

	6.9 Conclusion	157			
	6.9.1 Cognitive processing of information	157			
	6.9.2 Linearity, convergence, and optimality	158			
	6.9.3 Engineering application	158			
	Appendix A	158			
	References	160			
7	Cognition in radar target tracking	163			
	A. De Maio, A. Farina, A. Aubry, V. Carotenuto, and L. Pallotta				
	7.1 Introduction	163			
	7.2 Cognitive multitarget tracking system	164			
	7.2.1 General architecture of the tracking filter	165			
	7.2.2 Cognitive tracker architecture	169			
	7.3 Waveform selection for target tracking	173			
	7.3.1 Waveform scheduling strategy	177			
	7.3.2 Case study	179			
	7.4 Conclusion	183			
	References	184			
8	Anticipative target tracking with related study cases	187			
	A. Farina				
	8.1 Introduction	187			
	8.1.1 Anticipative target tracking	188			
	8.1.2 The case of MH370	191			
	8.2 Coordination of fore-active control and optimal guidance	100			
	law for an interceptor study case	192			
	8.2.1 List of symbols	193			
	8.2.2 Introduction	193			
	8.2.3 Theoretical framework	194			
	8.2.4 Case study	197			
	8.2.5 Simulation results	198			
	8.2.6 Discussion	202			
	8.3 Conclusion	203			
	References	205			
9	An overview on the exploitation of cognition in MIMO				
	radar, electronic warfare, and synthetic aperture radar A. Aubry, V. Carotenuto, A. De Maio, A. Farina, G. Fornaro, L. Pallotta, and A. Pauciullo				
	9.1 Introduction	209			
	9.1 Introduction9.2 Cognitive MIMO radar beampattern shaping	209 210			

	9.4	Advanced concepts in SAR: exploitation of cognition	218
		9.4.1 3D localization and monitoring of displacements with	
		interferometry	220
		9.4.2 SAR tomography and complex domain analysis of the	
		scattering in multibaseline SAR	224
		9.4.3 Knowledge-based and cognitive concepts in SAR	227
	9.5	Conclusion	230
	Refe	rences	231
10	A cro	oss-disciplinary overview with potential application and	
	exan	nples for cognitive radar	237
	A. Fa	nrina	
	10.1	Introduction	237
	10.2	From information to intelligence to exploit in cognitive radar	238
		10.2.1 Birth certificate of the information age: the Annus	
		Mirabilis 1948	238
		10.2.2 Path forward to intelligence theory: perhaps!	240
	10.3	Modeling everything with the new science of network	242
		10.3.1 Some mathematical properties of networks	245
	10.4	Bioinspired collective processing	254
		10.4.1 Potential applications to cognitive radar	254
	10.5	Mirror neurons: one of the most exciting events in neuroscience.	
		Does it matter to cognitive radar?	256
		10.5.1 Who discovered the mirror neuron phenomenon?	257
		10.5.2 Potential impact of research on adaptive radar signal	
		processing	257
	10.6	Additional recent researchers on neurosciences	258
	10.7	Memristors: the missing fourth element of circuits	259
		10.7.1 Potential modeling of synapse and axon via memristors	260
	10.8	The cybersecurity issue of a radar network	261
	10.9	Conclusion	262
	Ackn	owledgments	263
	Refe	rences	263

Index

269