Contents

Pr	Preface					
1	Power quality definitions Ramani Kannan and Jagabar Sathik Mohd. Ali					
	1.1		luction to various power quality indices	1		
	1.1	1.1.1	Why are we concerned about power quality?	1		
		1.1.1	Definition of power quality			
	1.2		us conventional power quality indices	2 3 3		
	1.2	1.2.1	Harmonics and interharmonic	3		
			Voltage fluctuations and flicker	6		
			Voltage indications and meker Voltage unbalance	7		
			Power frequency variations	8		
			Transients	9		
			Short duration voltage variations	11		
	1.3		ational standards	15		
	1.5	1.3.1		10		
		1.0.1	(IEEE) Standards	15		
		1.3.2	American National Standards Institute (IEEE/ANSI)	16		
			British Standards (BS) with IEC Standards	17		
		1.3.4	International Electrotechnical Commission (IEC)			
			Standards	19		
	1.4	Cost	of poor power quality	20		
		1.4.1	Investment analysis to mitigate costs of power quality	21		
		1.4.2	Economic impact of power quality disturbances	24		
		1.4.3	Economic mechanisms for improving power quality levels	26		
	Refe	erences		27		
2	Fre	quencv	-domain power theory and metering of harmonic-			
			esponsibility	29		
	Mur	at Erho	an Balci and Mehmet Hakan Hocaoglu			
	2.1			29		
	2.2		r resolutions for non-sinusoidal single-phase systems	30		
		2.2.1	Budeanu's power resolution	31		
		2.2.2	Fryze's power resolution	32		
		223	Shenherd and Zakikhani's power resolution	33		

vi .	Power quality	in future elec	ctrical power	systems
------	---------------	----------------	---------------	---------

	2.2.4	Sharon's power resolution	34
	2.2.5	Kusters and Moore's power resolution	34
		Czarnecki's power resolution	35
		IEEE standard power resolution	37
	2.2.8	Balci and Hocaoglu's power resolution	38
2.3	Power	resolutions for non-sinusoidal and unbalanced three-phase	
	system	ns	40
	2.3.1	Vector apparent power and its resolution	40
	2.3.2	Arithmetic apparent power	41
	2.3.3	Buchollz's apparent power and its resolutions	41
	2.3.4	IEEE standard apparent power and its resolution	50
2.4	Practic	cal implementation of apparent powers and their power	
	resolut	tions included in IEEE standard 1459 and	
		tandard 40110	51
	2.4.1	LabView blocks of developed power meter	51
	2.4.2	Measurement results	54
2.5		ing of harmonic-pollution responsibility	59
	2.5.1	The indices based on active power direction method	59
	2.5.2	The methods based on the harmonic analysis of the system	61
	2.5.3	The current decomposition based indices	63
	2.5.4	The methods based on the evaluation of the non-active	
		powers	65
2.6		atistical evaluation of the HGI , NLI and D_s harmonic	
		detection approaches for different load types under	
		l supply voltage waveforms	67
2.7	Conclu	usions	71
Refe	rences		71
Pass	ive har	monic filters	77
		Stéphane Azebaze Mboving and Zbigniew Hanzelka	
		2.07	
	mary		77
3.1	Introd		77
3.2		al concept of passive harmonic filters	77
3.3		passive filters	79
3.4		passive filters	83
	3.4.1	ϵ	83
		Double-tuned filter	92
2.5		Broad-band filters	92
3.5	-	l passive filter	119
3.6		usion	127
Kefe	rences		127

		Contents	vii
4		ve harmonic filters	131
	A.M	. Sharaf, Foad H. Gandoman and Behnam Khaki	
	4.1	Introduction	131
	4.2	Industrial load models and characteristics	132
		4.2.1 Dynamic and quasi-static harmonics in modern electrical	
		networks	132
		4.2.2 Industrial nonlinear loads types and characteristics	133
	4.3	Active power filter topologies and design considerations	134
		4.3.1 Active power filters use in AC and DC–AC power systems	134
		4.3.2 Active power filters—design issues and considerations	135
		4.3.3 Active power filters—industrial applications	136
	4.4	Active power filters configurations	137
		4.4.1 Current source active power filters—CSC	137
		4.4.2 Voltage source active power filters—VSC	138
		4.4.3 Shunt-active power filters	139
		4.4.4 Series-active power filters	140
		4.4.5 Hybrid-active power filters	141
		4.4.6 Modern/distributed-active power filter	142
	4.5	Active power filters—APF control strategies	143
		4.5.1 Overview of APF control techniques	143
		4.5.2 Heuristic soft computing-based control methods	144
		4.5.3 Industrial load harmonic mitigation using APF control	
		techniques	145
	4.6		148
	4.7		
		power filter	151
		4.7.1 Case study I: APF application and control strategies for	1.51
		hybrid AC–DC industrial loads	151
	4.0	4.7.2 Case study II: hybrid-APFs for AC–DC system	157
	4.8	0 0-10-10-10-10-10-10-10-10-10-10-10-10-10	157
	Refe	prences	159
5	Shu	nt flexible a.c. transmission	165
	Gra	zia Todeschini	
	5.1	Introduction	165
	5.2	Overview of harmonic concerns for shunt FACT devices and	
		chapter content	166
		5.2.1 Resonance conditions	167
		5.2.2 Frequency scans	169
	5.3	Power system model	170
		5.3.1 Power system components	171
		5.3.2 Background voltage distortion	179
		5.3.3 Conclusions on system model	180

viii	Power	quality	in	future	electrical	power	systems

	5.4	Shunt FACT device model	181
		5.4.1 Static VAr compensator (SVC)	181
		5.4.2 Static synchronous compensator (SSC or STATCOM)	186
		5.4.3 High-voltage dc (HVDC) transmission	190
		5.4.4 Conclusions on shunt FACT device model	192
	5.5	Harmonic studies	192
		5.5.1 Harmonic-performance studies	193
		5.5.2 Harmonicrating studies	198
	Refe	erences	201
6		ver-quality improvement using series FACTS	205
	Sala	th Kamel and Francisco Jurado	
	6.1	Introduction	205
		6.1.1 Electricity network and power-quality overview	205
		6.1.2 Load-flow analysis	205
	6.2	1 1 5	208
	6.3	Proposed SSSC model	209
		6.3.1 Case 1: PQ control	210
		6.3.2 Case 2: P control	211
		6.3.3 NR-RCIM load-flow method with developed SSSC model	212
	6.4	1	215
		6.4.1 Master line	216
		6.4.2 Slave line	218
		6.4.3 Incorporating of developed IPFC model in NR-RCIM	220
	<i></i>	load flow	220
	6.5	Validation of developed series FACTS models	220
		6.5.1 Proposed SSSC model in NR-RCIM	220
		6.5.2 Developed IPFC model in NR-RCIM	229
	6.6	Conclusions	235
	Keit	erences	235
7		ributed generation systems	239
	Kha	led H. Ahmed and Ahmed A. Aboushady	
	7.1	Introduction	239
	7.2	Distributed generation	241
		7.2.1 Description of the problem	242
		7.2.2 Applications of distribution generation	243
	7.3	Voltage source converters	245
	7.4	Control techniques in DG systems	247
		7.4.1 Grid connection	247
		7.4.2 Islanded mode	250
	7.5	Power quality in DG	257
		7.5.1 Grid connected	257
		7.5.2 Island mode	258

			C	ontents	ix
	7.6	Harmo	onics and passive filter design for DG		260
			Power filter configurations		260
		7.6.2			261
		7.6.3	Filter design		266
		7.6.4	Case study		270
		7.6.5	Damping filter design		270
		7.6.6	Simulation results		272
	Refe	erences			274
8	Bac	kward-	-forward sweep-based islanding scenario generation	i	
	_		for defensive splitting of radial distribution systems nd B. Mohammadi-Ivatloo		283
	8.1	Introd	luction		283
	8.2	Proble	em formulation		285
		8.2.1	Proposed backward-forward-sweep-based islanding		
			scenario generation algorithm		285
		8.2.2	Objective function and constraints		288
		8.2.3	Binary imperialistic-competitive-algorithm-based		
			optimization process		288
	8.3		ation studies		291
	8.4	Concl	usion		298
		endix			300
	Refe	erences			301
9	Dec	entralis	sed voltage control in smart grids		305
			ummadpour Shotorbani, Behnam Mohammadi-ivatloo, g and Saeid Ghassem Zadeh		
	9.1	Introd	luction		305
		9.1.1	Voltage profile as power quality index		306
		9.1.2	Microgrids		308
		9.1.3	Motivation of cooperative decentralised control in		
			smart grid		310
	9.2	Decen	ntralised and distributed control systems		311
		9.2.1	Contraction-based multi-agent systems		313
		9.2.2	Contract net interaction protocol		315
	9.3	Centra	alised hierarchical control of the DERs		317
		9.3.1	Frequency regulation		317
		9.3.2	Voltage magnitude regulation		318
	9.4		integration concealment		320
	9.5		ive power dispatch		322
		9.5.1	Power-flow equations		323
		9.5.2	Sensitivity calculations		324
		9.5.3	Modal analysis		325

X	Power	quality	in future	electrical	power	systems	
		7	,		F	~,~	

	9.6	Distrib	outed voltage control schemes	326
		9.6.1	Optimisation based on the Lagrange multipliers method	326
		9.6.2	Distributed voltage control via multi-agent system	327
		9.6.3	Distributed voltage control with simplified model-based	
			sensitivity calculation	330
		9.6.4	Decentralised cooperative optimisation using self-organised	
			sensor network	333
		9.6.5	Distributed cooperative gradient-descent optimisation	
			of reactive power dispatch	336
	Refe	rences		339
	Furth	er Rea	dings	341
10			onomic issues of power quality	343
	Jayes	sh Jogl	ekar	
	10.1	Intro	duction	343
	10.2		rent approaches for finding out power quality impact	
		on ta		344
	10.3		gn of modules to associate disturbance and economic	
		loss		344
			1 Case study 1: cement plant	345
			2 Case study 2: industry	346
			3 Case study 3: hospital	347
	10.4		relationship between duration of disturbance and its	
			benefit analysis index	348
	10.5		ovement of power quality in the system and its expected	
		benef		349
	10.6	Powe	er-quality investment and gross domestic product in	
		devel	oping countries: case study	350
			1 Case 1: Nepal	350
		10.6.	2 Case 2: Sri Lanka	354
	10.7	Conc	lusions	356
	Ackn	owledg	gment	356
	Refe	rences		356
11			ic robust programing approach for the design of energy	
		_	nt systems	359
	Felip	e Vale	ncia Arroyave and Alejando Marquez Ruiz	
	11.1	Intro	duction	359
	11.2		st programing framework	362
	11.3		gy management system as a robust programing problem	363
	11.4	•	study and simulation results	370
	11.5		luding remarks	376
		owledg		377
		rences		377