Contents

1 Reliability engineering in power electronic converter systems 1
 1.1 Performance factors of power electronic systems 1
 1.1.1 Power electronic converter systems 1
 1.1.2 Design objectives for power electronic converters 3
 1.1.3 Reliability requirements in typical power electronic applications 4
 1.2 Reliability engineering in power electronics 6
 1.2.1 Key terms and metrics in reliability engineering 6
 1.2.2 Historical development of power electronics and reliability engineering 11
 1.2.3 Physics of failure of power electronic components 15
 1.2.4 DFR of power electronic converter systems 17
 1.2.5 Accelerated testing concepts in reliability engineering 20
 1.2.6 Strategies to improve the reliability of power electronic converter systems 23
 1.3 Challenges and opportunities in research on power electronics reliability 24
 1.3.1 Challenges in power electronics reliability research 25
 1.3.2 Opportunities in power electronics reliability research 25
 References 26

2 Anomaly detection and remaining life prediction for power electronics 31
 2.1 Introduction 31
 2.2 Failure models 32
 2.2.1 Time-dependent dielectric breakdown models 33
 2.2.2 Energy-based models 34
 2.2.3 Thermal cycling models 35
 2.3 FMMEA to identify failure mechanisms 36
 2.4 Data-driven methods for life prediction 39
 2.4.1 The variable reduction method 40
 2.4.2 Define failure threshold by Mahalanobis distance 42
 2.4.3 K-nearest neighbor classification 46
 2.4.4 Remaining life estimation-based particle filter parameter 48
2.4.5 Data-driven anomaly detection and prognostics for electronic circuits 51
2.4.6 Canary methods for anomaly detection and prognostics for electronic circuits 52
2.5 Summary 53
Acknowledgements 53
References 53

3 Reliability of DC-link capacitors in power electronic converters 59
3.1 Capacitors for DC-links in power electronic converters 59
3.1.1 The type of capacitors used for DC-links 59
3.1.2 Comparison of different types of capacitors for DC-links 60
3.1.3 Reliability challenges for capacitors in power electronic converters 63
3.2 Failure mechanisms and lifetime models of capacitors 64
3.2.1 Failure modes, failure mechanisms, and critical stressors of DC-link capacitors 64
3.2.2 Lifetime models of DC-link capacitors 66
3.2.3 Accelerated lifetime testing of DC-link capacitors under humidity conditions 68
3.3 Reliability-oriented design for DC links 69
3.3.1 Six types of capacitive DC-link design solutions 70
3.3.2 A reliability-oriented design procedure of capacitive DC-links 72
3.4 Condition monitoring of DC-link capacitors 75
References 77

4 Reliability of power electronic packaging 83
4.1 Introduction 83
4.2 Reliability concepts for power electronic packaging 84
4.3 Reliability testing for power electronic packaging 85
4.3.1 Thermal shock testing 86
4.3.2 Temperature cycling 86
4.3.3 Power cycling test 87
4.3.4 Autoclave 88
4.3.5 Gate dielectric reliability test 88
4.3.6 Highly accelerated stress test 89
4.3.7 High-temperature storage life (HSTL) test 89
4.3.8 Burn-in test 89
4.3.9 Other tests 90
4.4 Power semiconductor package or module reliability 90
4.4.1 Solder joint reliability 91
4.4.2 Bond wire reliability 91
4.5 Reliability of high-temperature power electronic modules 94
4.5.1 Power substrate 95
5 Modelling for the lifetime prediction of power semiconductor modules

5.1 Accelerated cycling tests
5.2 Dominant failure mechanisms
5.3 Lifetime modelling
5.3.1 Thermal modelling
5.3.2 Empirical lifetime models
5.3.3 Physics-based lifetime models
5.3.4 Lifetime prediction based on PC lifetime models
5.4 Physics-based lifetime estimation of solder joints within power semiconductor modules
5.4.1 Stress–strain (hysteresis) solder behaviour
5.4.2 Constitutive solder equations
5.4.3 Clech’s algorithm
5.4.4 Energy-based lifetime modelling
5.5 Example of physics-based lifetime modelling for solder joints
5.5.1 Thermal simulation
5.5.2 Stress–strain modelling
5.5.3 Stress–strain analysis
5.5.4 Model verification
5.5.5 Lifetime curves extraction
5.5.6 Model accuracy and parameter sensitivity
5.5.7 Lifetime estimation tool
5.6 Conclusions

6 Minimization of DC-link capacitance in power electronic converter systems

6.1 Introduction
6.2 Performance tradeoff
6.3 Passive approach
6.3.1 Passive filtering techniques
6.3.2 Ripple cancellation techniques
6.4 Active approach
6.4.1 Power decoupling techniques
6.4.2 Ripple cancellation techniques
Wind turbine systems

7.1 Introduction

7.2 Review of main WT power electronic architectures

7.2.1 Onshore and offshore

7.3 Public domain knowledge of power electronic converter reliabilities

7.3.1 Architecture reliability

7.3.2 SCADA data

7.3.3 Converter reliability

7.4 Reliability FMEA for each assembly and comparative prospective reliabilities

7.4.1 Introduction

7.4.2 Assemblies

7.4.3 Summary

7.5 Root causes of failure

7.6 Methods to improve WT converter reliability and availability

7.6.1 Architecture

7.6.2 Thermal management

7.6.3 Control

7.6.4 Monitoring

7.7 Conclusions

7.8 Recommendations

Acknowledgements

Terminology

Abbreviations

Variables

References

Active thermal control for improved reliability of power electronics systems

8.1 Introduction

8.1.1 Thermal stress and reliability of power electronics

8.1.2 Concept of active thermal control for improved reliability

8.2 Modulation strategies achieving better thermal loading

8.2.1 Impacts of modulation strategies on thermal stress

8.2.2 Modulations under normal conditions

8.2.3 Modulations under fault conditions

8.3 Reactive power control achieving better thermal cycling

8.3.1 Impacts of reactive power
8.3.2 Case study on the DFIG-based wind turbine system 206
8.3.3 Study case in the paralleled converters 210
8.4 Thermal control strategies utilizing active power 212
 8.4.1 Impacts of active power to the thermal stress 212
 8.4.2 Energy storage in large-scale wind power converters 214
8.5 Conclusions 217
Acknowledgements 217
References 218

9 Lifetime modeling and prediction of power devices 223
 9.1 Introduction 223
 9.2 Failure mechanisms of power modules 225
 9.2.1 Package-related mechanisms 225
 9.2.2 Burnout failures 227
 9.3 Lifetime metrology 229
 9.3.1 Lifetime and availability 229
 9.3.2 Exponential distribution 230
 9.3.3 Weibull distribution 231
 9.3.4 Redundancy 232
 9.4 Lifetime modeling and design of components 233
 9.4.1 Lifetime prediction based on mission profiles 233
 9.4.2 Modeling the lifetime of systems with constant
 failure rate 234
 9.4.3 Modeling the lifetime of systems submitted to
 low-cycle fatigue 236
 9.5 Summary and conclusions 241
Acknowledgements 242
References 242

10 Power module lifetime test and state monitoring 245
 10.1 Overview of power cycling methods 245
 10.2 AC current PC 246
 10.2.1 Introduction 246
 10.2.2 Stressors in AC PC 247
 10.3 Wear-out status of PMs 249
 10.3.1 On-state voltage measurement method 250
 10.3.2 Current measurement 253
 10.3.3 Cooling temperature measurement 254
 10.4 Voltage evolution in IGBT and diode 256
 10.4.1 Application of $v_{ce, on}$ monitoring 259
 10.4.2 Degradation and failure mechanisms 260
 10.4.3 Post-mortem investigation 262
 10.5 Chip temperature estimation 262
 10.5.1 Introduction 262
 10.5.2 Overview of junction temperature estimation methods 264
10.5.3 \(v_{ce,\text{on}} \)-load current method 265
10.5.4 Estimating temperature in converter operation 267
10.5.5 Temperature measurement using direct method 270
10.5.6 Estimated temperature evaluation 274
10.6 Processing of state monitoring data 277
10.6.1 Basic types of state data handling 278
10.6.2 Application of state monitoring 281
10.7 Conclusion 283
Acknowledgement 283
References 283

11 Stochastic hybrid systems models for performance and reliability analysis of power electronic systems 287
11.1 Introduction 287
11.2 Fundamentals of SHS 289
 11.2.1 Evolution of continuous and discrete states 289
 11.2.2 Test functions, extended generator, and moment evolution 290
 11.2.3 Evolution of the dynamic-state moments 291
 11.2.4 Leveraging continuous-state moments for dynamic risk assessment 292
 11.2.5 Recovering Markov reliability and reward models from SHS 293
11.3 Application of SHS to PV system economics 295
11.4 Concluding remarks 299
Acknowledgements 299
References 299

12 Fault-tolerant adjustable speed drive systems 303
12.1 Introduction 303
12.2 Factors affecting ASD reliability 304
 12.2.1 Power semiconductor devices 305
 12.2.2 Electrolytic capacitors 305
 12.2.3 Other auxiliary factors 305
12.3 Fault-tolerant ASD system 306
12.4 Converter fault isolation stage in fault-tolerant system design 307
12.5 Control or hardware reconfiguration stage in fault-tolerant system design 308
 12.5.1 Topological techniques 311
 12.5.2 Software techniques 318
 12.5.3 Redundant hardware techniques 328
12.6 Conclusion 340
Acknowledgements 348
References 348
15.5	Fan life	435
15.6	High accelerated life test	438
15.6.1	Low temperature stress	440
15.6.2	High temperature stress	441
15.6.3	Vibration stress	441
15.6.4	Combined temperature–vibration stress	443
15.7	Vibration, shock, and drop test	444
15.7.1	Vibration test	444
15.7.2	Shock and drop test	445
15.8	Manufacturing conformance testing	445
15.8.1	The ongoing reliability testing	446
15.9	Conclusions	448
Acknowledgement	448	
References	448	

16	High-power converters	451
16.1	High-power applications	451
16.1.1	General overview	451
16.2	Thyristor-based high-power devices	452
16.2.1	Integrated gate-commutated thyristor (IGCT)	453
16.2.2	Internally-commutated thyristor (ICT)	455
16.2.3	Dual-ICT	455
16.2.4	ETO/IETO	457
16.2.5	Reliability of thyristor-based devices	458
16.3	High-power inverter topologies	459
16.3.1	Two-level converters	459
16.3.2	Multi-level converters	460
16.4	High-power dc–dc converter topologies	464
16.4.1	DAB converter	464
16.4.2	Modular dc–dc converter system	469
References	471	

Index | 475