Contents

Biographies			xi
A	know	ledgments	xiii
1	Intr	oduction	1
	1.1	Overview of WBG devices	2
		1.1.1 WBG devices in comparison to Si devices	2
		1.1.2 WBG device status	2 3
	1.2	Motivation for WBG device characterization	9
	1.3	About this book	11
	Refe	erences	13
2	Puls	sed static characterization	17
	2.1	Fundamentals of pulsed <i>I–V</i> testing	17
	2.2	Test equipment description	18
	2.3	Test fixture selection/design	20
	2.4	Junction temperature control	21
	2.5	Cryogenic device testing	25
	2.6	Pulse waveform timing	29
		Output $(I_d - V_{ds})$ characteristic	31
	2.8	Transfer $(I_d - V_{gs})$ characteristic	35
	2.9	Gate current $(I_{g,ss}-V_{gs})$ characteristic	37
		Drain-source leakage $(I_{d,off}-V_{ds})$ characteristic	40
		Summary	42
	Refe	rences	42
3	June	ction capacitance characterization	43
	3.1	Fundamentals of <i>C</i> – <i>V</i> testing	43
	3.2	Test equipment description	45
	3.3	Test fixture selection/design and calibration	47
	3.4	Output capacitance (C_{oss}) characteristic	48
	3.5	Input capacitance (C_{iss}) characteristic	51
	3.6	Reverse transfer capacitance (C_{rss}) characteristic	53
	3.7	Gate charge (Q_g) characteristic	54
	3.8	Calculation of C_{oss} -related switching energies	59
	3.9	Summary	62
	Refe	rences	63

4	Fun	damen	tals of dynamic characterization	65	
	4.1	Switch	hing commutation analysis	65	
	4.2	Funda	amentals of DPT	69	
	4.3	DPT (design	72	
		4.3.1	Load inductor	73	
		4.3.2	DC source	73	
		4.3.3	DC capacitor	74	
			Bleeder resistor	75	
		DPT o		75	
	4.5	Case	study	77	
		4.5.1	Load inductor	77	
		4.5.2	DC source	78	
		4.5.3	DC capacitor bank	79	
		4.5.4	Bleeder resistor	80	
		4.5.5	DPT control	8.	
		Sumn	nary	84	
	Refe	erences		84	
5	Gat	e drive	for dynamic characterization	8	
			drive fundamentals	87	
	5.2	Gate of	drive-related key device characteristics	89	
		5.2.1	Gate drive design considering device static		
			characteristics	90	
		5.2.2	Gate drive design considering device dynamic		
			characteristics	92	
	5.3	Gate of	drive design	92	
		5.3.1	Signal isolator	93	
		5.3.2	Isolated power supply	97	
		5.3.3	Gate drive IC	99	
		5.3.4	Gate resistor	102	
		5.3.5	Decoupling capacitor	103	
	5.4	Case	study	104	
		5.4.1	Signal isolator	104	
		5.4.2	Isolated power supply	100	
		5.4.3	Gate drive IC	107	
		5.4.4	Gate resistor	108	
		5.4.5	Decoupling capacitor	108	
	5.5	Sumn	nary	109	
	References				
6	Lay	out des	sign and parasitic management	111	
	6.1		et of parasitics on the switching performance	111	
		6.1.1	Gate loop parasitics	111	
		6.1.2	Power loop parasitics	112	
			Common parasitics	114	

				Contents	vii
	6.2	DDT 1	avout decien		115
	6.3	Case s	ayout design		113
	0.5		Brief overview of WBG devices' package		119
			Case study 1: TO-247 package SiC MOSFETs		121
			Case study 1: 10-247 package SIC MOSTETS Case study 2: surface-mount WBG device		130
			With consideration of current measurement in DP	т	134
			Gate drive	1	136
	6.4				137
		rences	iai y		138
	1010	1011005			150
7	Prot	ection	design for double pulse test		141
	7.1		iew of state-of-the-art protection scheme for WBG	devices	141
	7.2		state circuit breaker		144
			Operation principle		145
			Circuit implementation and design consideration		147
			Test setup and procedure		151
			Case study		152
	7.3		deration for high-voltage WBG device DPT		158
			Safety consideration		158
		7.3.2	Protection scheme		158
	7.4	Summ	nary		160
	Refe	rences			161
8			ent and data processing for dynamic characteriz	ation	165
	8.1		onsiderations and challenges in dynamic		
	0.0		eterization measurement		165
	8.2		oscope selection and setup		166
	8.3		ge probe selection and setup		167
	8.4		nt sensor selection and setup		169
	8.5		alignment (deskew) of measurements		171
	8.6		deration of CM ringing		173
	8.7		of dynamic data processing		174
	8.8		fication of switching transient subintervals		177
	8.9		lation of <i>I–V</i> misalignment for deskew adjustment		183
			lation of switching energy loss		187
			deration of ringing and DC bias		191
			ative method for switching energy loss calculation		194
			lation of overshoot voltages and slew rates	1,	196
			al waveform estimation using static and dynamic re	esuits	198
		Summ	iai y		204
	Kefe	rences			204
9	Cros	ss-talk	consideration		207
-	9.1		anism causing cross-talk		208
	9.2		ons for cross-talk suppression		211
	- · -	201001			

viii Characterization of wide bandgap power semiconductor devices

			Passive solutions Active solutions	212 214		
	9.3	9.2.3	Summary of cross-talk suppression solutions blogy for characterization of cross-talk-related	222		
	9.3		g performance	222		
			Case study 1: GaN HEMT with passive solution	225		
			Case study 2: SiC MOSFET with active gate	223		
			drive circuit	232		
	9.4	Summar		237		
		rences		238		
10	Imp	act of th	ree-phase system	241		
	10.1		ing factors and limitations in the actual three-phase			
		system	-	242		
		-	Parasitics of inductive load	242		
		10.1.2	Interaction of phase-legs	247		
			Coupling effect by heat sink	250		
			Experimental verification	250		
	10.2		nic characterization with practical application			
		-	erations	260		
		10.2.1	High-frequency modeling of inductive load	262		
		10.2.2				
			from inductive load	265		
		10.2.3	Design criteria of the auxiliary filter	265		
		10.2.4	Experimental verification	270		
	10.3	Case st	tudy: validation of the DPT results vs. switching			
		performance in an actual system				
		10.3.1	Switching performance comparison between			
			DPT board and three-phase VSC	276		
		10.3.2	Interaction of phase-legs and impact of heat			
			sink on the switching performance	278		
		10.3.3	Validation of the accuracy of DPT results			
			in comparison with switching performance			
			in an actual converter	283		
	10.4	Summa	ary	286		
	Refe	rences		287		
11	Top	ology cor	nsideration	289		
	11.1	Curren	t source converter	289		
		11.1.1	Switching commutation analysis	290		
		11.1.2	Comparison of switching commutation loop			
			with conventional DPT	293		

Appendix B Index		Data processing code for dynamic characterization	307 327
Appendi	x A	Recommended equipment and components list for DPT setup	303
Refer	ences		301
11.3	Disc	sussion and summary	300
	11.2	.3 Consideration of other non-active devices	299
	11.2	.2 Comparison of switching loop with conventional DPT	299
	11.2	.1 Switching commutation analysis	297
11.2	Thre	ee-level ANPC converter	295
	11.1	.3 Consideration of other non-active devices	295
		Conten	ts ix