Contents

1 The power grid as part of a 100% renewable energy system 1
Math H.J. Bollen and Antonio Moreno-Munoz
1.1 Introduction 1
1.2 Status and trends in the voluntary use of renewable energy 3
1.2.1 World’s leading companies pledge to use 100% renewable 3
1.2.2 The islands leading towards 100% renewable 4
1.3 The 100% renewable energy system 4
1.4 Flexibility 7
1.5 The role of the electricity transport 10
1.6 The role of energy storage 11
1.7 Reliability in the 100% renewable energy system 14
1.7.1 The view of the electricity consumer 14
1.7.2 The view of the electricity producer 15
1.7.3 The view of the system operator 15
1.8 The transition stage: towards 100% renewable energy 18
1.9 Renewable energy integration issues 19
1.10 The prosumer role 21
1.11 Key technologies 23
References 26

2 International requirements for large integration
of renewable energy sources 29
*A. Molina-García, A.D. Hansen, E. Muljadi, V. Gevorgian,
J. Fortmann and E. Gómez-Lázarom*
2.1 General overview 29
2.2 Ancillary services in RES: comparisons among
different countries 32
2.2.1 Active power reserves and frequency control 36
2.2.2 Reactive power control/voltage control 37
2.3 RES under disturbances: fault ride-through capability 39
2.4 Renewable energy curtailment 44
2.5 Acknowledgements 49
References 49
3 Nowcasting and short-term wind forecasting for wind energy management

Agustín Agüera-Pérez, José Carlos Palomares-Salas, Juan José González de la Rosa, José María Sierra-Fernández and Álvaro Jiménez-Montero

3.1 Wind forecasting in grid and market operations
 3.1.1 Uncertainty in wind energy production
 3.1.2 Effects of the wind forecasts uncertainty in the power system
 3.1.3 Wind uncertainty in market operations

3.2 Wind power forecasting systems
 3.2.1 Wind control centres
 3.2.2 Description of wind power forecasting systems
 3.2.3 Wind power forecasting system results: representation and validation

3.3 Physical approaches for wind forecasting
 3.3.1 Numerical weather prediction
 3.3.2 Physical approaches focused on wind forecasting

3.4 Statistical approaches for wind forecasting

3.5 Enhancing predictions with nowcasting

References

4 Solutions and active measures for wind power integration

Argo Rosin, Imre Drovtar and Jako Kilter

4.1 Introduction

4.2 Energy policy

4.3 Technology overview and prospective changes in the power grid
 4.3.1 Overview of wind power plant technologies
 4.3.2 Impact of electric transportation and electric vehicles
 4.3.3 Impact of consumers

4.4 Technical and economic impacts of large-scale wind integration
 4.4.1 Technical challenges
 4.4.2 Impacts on existing power plant economics and electricity market
 4.4.3 System frequency regulation and increasing wind capacity impacts on regulating reserves

4.5 Measures to support large-scale wind integration
 4.5.1 Aggregated thermal storages for balancing of power generation forecast errors
 4.5.2 Pumped hydro energy storage for balancing of power generation forecast errors
 4.5.3 Demand side management for providing balancing power

4.6 Conclusion

References
5 Grid integration of large-scale PV plants: dealing with power fluctuations
Javier Marcos Álvarez, Íñigo de la Parra Laita, Luis Marroyo Palomo, Eduardo Lorenzo Pigueiras and Miguel García Solano

5.1 Introduction 131
5.2 The photovoltaic observatory 133
5.3 Irradiance and power output fluctuations in large PV plants 135
 5.3.1 At a PV plant level 135
 5.3.2 Power fluctuations at a PV plant group level 142
5.4 Simulating power fluctuations at PV plants 149
 5.4.1 PV plant model 150
 5.4.2 Model of a group of PV plants 152
5.5 Smoothing power output fluctuations by using energy storage systems 158
 5.5.1 The worst fluctuation model 160
 5.5.2 Conventional ramp-rate control 161
 5.5.3 Power Ramp-Rate control based on the PV power plant model 163
References 169

6 Towards the extensive use of renewable energy resources: needs, conditions and enabling technologies
Isabel M. Moreno-Garcia, Rafael Real-Calvo, Victor Pallares-Lopez, Miguel J. Gonzalez-Redondo and Isabel Santiago

6.1 Introduction 171
6.2 Measurement and assessment of the renewable generation 175
 6.2.1 Use of a PV monitoring system on time in a grid-connected PV park 176
 6.2.2 Temporal requirements in the measurement of parameters to control the power quality of the generated signal 181
6.3 The interconnection between renewable generation and the electricity grid 185
 6.3.1 Temporary requirements for protections 186
 6.3.2 The active management of the interconnection 189
 6.3.3 Solutions for the interconnection with electrical grid: smart inverter 191
6.4 Wide-area network: data model with the IEC 61850 standard for smart grid 193
 6.4.1 Integration of renewables in wide area networks 194
 6.4.2 Detection of faults in cascade and fall of the network (blackout) 195
 6.4.3 Data model with the IEC 61850 standard 196
6.4.4 IEC 61850 modelling for distributed energy resource applications

6.4.5 Stability with synchrophasors and synchronisation with PTP

6.4.6 Justification of the distributed synchronism through the IEEE 1588 v2 protocol

6.5 Conclusions

References

7 DC distribution systems and microgrids

Tomislav Dragicevic, Amjad Anvari-Moghaddam, Juan C. Vasquez and Josep M. Guerrero

7.1 Introduction

7.2 DC microgrid system overview

7.2.1 Single-bus topologies

7.2.2 Multi-bus topologies

7.2.3 Reconfigurable topologies

7.2.4 Hybrid AC/DC MGs

7.3 Operation and control of DC microgrids

7.3.1 Local control functionalities

7.3.2 Coordinated control

7.4 DC microgrid system protection

7.4.1 Types of faults

7.4.2 Grounding

7.4.3 Protective devices

7.4.4 Design of protection systems

7.5 Application of DC microgrids to future smart grids

7.5.1 High-efficiency households

7.5.2 Renewable energy parks

7.5.3 Hybrid ESS

7.5.4 EV fast charging stations

7.6 Conclusions

References

8 Distributed energy resources integration and demand response: the role of stochastic demand modelling

Emilio J. Palacios-García, Antonio Moreno-Muñoz, Isabel Santiago-Chiquero, José María Flores-Arias and Francisco J. Bellido-Outeirinho

8.1 Introduction

8.2 Overview of modelling techniques for energy demand prediction

8.2.1 Top-down models

8.2.2 Bottom-up models

8.2.3 Comparison