Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the author</td>
<td>xxvii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xxix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxxi</td>
</tr>
<tr>
<td>Symbols used in figures</td>
<td>xxxiii</td>
</tr>
<tr>
<td>Abbreviations and interpretations</td>
<td>xxxvii</td>
</tr>
</tbody>
</table>

1 Construction execution model

1.1 Introduction | 1 |
1.2 Wider construction environment | 1 |
1.3 Construction execution model – components | 2 |
 1.3.1 Technology, QMS and competency | 2 |
 1.3.2 Technology | 3 |
 1.3.3 QMS procedures | 3 |
 1.3.4 Engineering competency | 4 |
1.4 Technology | 4 |
 1.4.1 Technology stages | 4 |
 1.4.2 Construction design specification | 4 |
 1.4.3 Project-specific design specification – SDS | 6 |
 1.4.4 Project-specific design specification – DDS | 8 |
 1.4.5 Project-generic design specification | 8 |
 1.4.6 Detail design | 9 |
 1.4.7 Manufacture/procure | 9 |
 1.4.8 Equipment site installation | 9 |
 1.4.9 Equipment commissioning | 9 |
 1.4.10 Equipment and CSBE – terminology | 9 |
1.5 Construction QMS procedures | 10 |
 1.5.1 QMS scheme investment process | 10 |
 1.5.2 Scheme investment process – stages | 11 |
 1.5.3 QMS procedures – format | 12 |
 1.5.4 Schemes and projects | 13 |
1.6 Competency | 13 |
 1.6.1 Competency model | 13 |

2 Legal and national/international standards | 15 |
2.1 Introduction | 15 |
2.2 UK legal requirements | 15 |
 2.2.1 Key legal requirements | 15 |
2.2.2 UK Electricity Act 1989 16
2.2.3 The transmission and distribution licences 17
2.2.4 The grid code 17
2.2.5 The distribution code 17

2.3 UK health and safety legal requirements 18
2.3.1 The Health and Safety at Work etc. Act 1974 18
2.3.2 Health and safety documentation relevant to construction 18
2.3.3 Health and safety executive 19
2.3.4 HASWA – duties 19

2.4 UK Electricity Safety, Quality and Continuity Regulations 2002/2009 20
2.4.1 Purpose of the regulations 20
2.4.2 The ESQC regulations 21
2.4.3 Application of ESQC regulations 23

2.5 UK environmental legislation 23
2.5.1 Environmental legislation categories 23
2.5.2 Range of environmental legislation 23
2.5.3 UK Environment Agency 24

2.6 UK planning acts 25
2.6.1 Planning Act 2008 25
2.6.2 Town and Country Planning Order 1995 26

2.7 National/international technical standards 26
2.7.1 Relevant technical standards 26
2.7.2 Definition of a standard 26
2.7.3 Electricity networks association technical specifications 27
2.7.4 British Standards 27
2.7.5 International Electrotechnical Commission (IEC) standards 27
2.7.6 European Commission for Electrotechnical Standardisation (CENELEC) standards 28
2.7.7 Euronorm standards 28
2.7.8 International Council on Large Electric Systems (CIGRE) standards 28
2.7.9 American National Standards Institute (ANSI) standards 29
2.7.10 IEEE standards 29

2.8 International Organisation for Standardisation (ISO) standards 29
2.8.1 ISO – purpose 29
2.8.2 ISO 9001: Quality Management Systems 29
2.8.3 ISO 14001: Environmental Management Systems 30

2.9 Publically available specification (PAS) 30
2.9.1 Publically available specification 30

2.10 Occupational Health and Safety Assessment Series 31
2.10.1 Occupational Health and Safety Assessment Series (OHSAS) 31

2.11 Organisation-specific technical standards 31
2.11.1 Range of technical documents 31
4 Power system fault analysis

4.1 Power system fault analysis – requirements

4.2 Symmetrical components fundamentals

4.2.1 Symmetrical components – basic concepts

4.2.2 Practical determination of phase-sequence impedances

4.2.3 Phase-sequence impedances of an OHL (or HV cable)

4.2.4 Phase-sequence impedances of a star-delta transformer

4.2.5 Phase-sequence impedance of an auto-transformer

4.2.6 Phase-sequence impedances of an earthing transformer

4.2.7 OHL single and double circuit impedances

4.2.8 Impedances database

4.3 Generator short-circuit performance

4.3.1 Generator short-circuit considerations

4.3.2 Rotor and stator windings

4.3.3 Unloaded generator subject to three-phase short-circuit at generator terminals

4.3.4 Generator fault current – practical considerations

4.3.5 Loaded generator subject to a three-phase short-circuit at the generator terminals

4.3.6 Generator sequence impedances

4.3.7 Generator subject to an open-circuit

4.4 Sequence networks for common fault conditions

4.4.1 Sequence networks

4.4.2 Three-phase fault

4.4.3 Single-phase-to-earth fault

4.4.4 Phase-to-phase fault

4.4.5 Single-phase open-circuit

4.4.6 Phase-sequence current flow analysis

4.5 Maximum and minimum fault level studies

4.5.1 Maximum and minimum busbar fault levels

4.5.2 Maximum and minimum fault level studies – feeders

4.5.3 Use of maximum and minimum fault level studies

4.6 Fault currents – methods and techniques

4.6.1 Fault calculations – overview

4.6.2 Generator driving voltage

4.6.3 Methods and techniques

4.6.4 Use of circuit maximum and minimum fault levels

4.6.5 Fault current decrement and protection operation

4.6.6 Transformer tap changers

4.6.7 The infinite busbar

4.6.8 Comparative impedances

5 HV network design

5.1 Introduction

5.2 HV network planning standards

5.2.1 Network planning standards – purpose
5.3 HV network design standards – power system studies 105
 5.3.1 System studies – requirements 105
5.4 HV network design – fixed design parameters 111
 5.4.1 Fixed design standards 111
5.5 Project-specific design 121
 5.5.1 Project-specific design considerations 121
5.6 Future power network challenges 122
 5.6.1 Power flows 122
 5.6.2 Smart grid 122

6 Overhead line design 123
6.1 Introduction 123
6.2 OHL design overview 123
 6.2.1 OHL design – key requirements 123
6.3 Tower, pole and foundation design 124
 6.3.1 Tower design 124
 6.3.2 Tower aesthetic design 128
 6.3.3 Pole design 128
 6.3.4 Foundations 129
6.4 Conductor system design 131
 6.4.1 Conductor requirements 131
 6.4.2 Conductors – materials and types 131
 6.4.3 Gap conductor 133
 6.4.4 Conductor selection 133
6.5 Insulators and OHL fittings design 134
 6.5.1 Insulator requirements 134
 6.5.2 Insulator materials 136
 6.5.3 OHL fittings 137
6.6 Tower earth-wires and earth resistance 139
 6.6.1 OHL earth-wires 139
 6.6.2 Tower earth resistance 140
6.7 Conductor tension and sag 140
 6.7.1 Tension and sag – considerations 140
 6.7.2 Sag and tension – basic theory 140
 6.7.3 Determination of sag 141
 6.7.4 Conductor tension factors 142
 6.7.5 Temperature/ice/wind considerations 142
 6.7.6 Change of state equation 143
 6.7.7 Equivalent span 144
 6.7.8 Tension and sag charts 145
 6.7.9 Conductor supports not on same level 145
6.8 Tower height and spacing 145
 6.8.1 Tower height and conductor clearances 145
 6.8.2 Tower spacing 145
6.9 OHL design philosophy 146
 6.9.1 Deterministic design 146
High voltage power network construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9.2</td>
<td>Probabilistic design</td>
<td>146</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Load factored design</td>
<td>147</td>
</tr>
<tr>
<td>6.10</td>
<td>Routing and siting</td>
<td>148</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Routing and siting – stages</td>
<td>148</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Initial route and siting selection</td>
<td>148</td>
</tr>
<tr>
<td>6.10.3</td>
<td>Inspection of the initial route</td>
<td>149</td>
</tr>
<tr>
<td>6.10.4</td>
<td>Final route and siting selection</td>
<td>149</td>
</tr>
<tr>
<td>6.10.5</td>
<td>Support plotting</td>
<td>149</td>
</tr>
<tr>
<td>6.10.6</td>
<td>Support pegging</td>
<td>149</td>
</tr>
<tr>
<td>6.10.7</td>
<td>Aerial surveys and software solutions</td>
<td>150</td>
</tr>
<tr>
<td>6.11</td>
<td>OHL asset replacement</td>
<td>150</td>
</tr>
<tr>
<td>6.11.1</td>
<td>Asset replacement</td>
<td>150</td>
</tr>
<tr>
<td>6.12</td>
<td>Review</td>
<td>150</td>
</tr>
</tbody>
</table>

7 High voltage and auxiliary cable design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>7.2</td>
<td>HV cable design</td>
<td>151</td>
</tr>
<tr>
<td>7.2.1</td>
<td>HV cables – considerations</td>
<td>151</td>
</tr>
<tr>
<td>7.3</td>
<td>Cable historical development and types</td>
<td>152</td>
</tr>
<tr>
<td>7.3.1</td>
<td>HV cable historical development</td>
<td>152</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Single-core vs three-core cable</td>
<td>155</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Summary of cable types and installations</td>
<td>155</td>
</tr>
<tr>
<td>7.4</td>
<td>Cable technical characteristics</td>
<td>156</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Cable technical characteristics examined</td>
<td>156</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Cable temperature monitoring</td>
<td>162</td>
</tr>
<tr>
<td>7.5</td>
<td>Cable ratings</td>
<td>162</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Cable continuous current rating</td>
<td>162</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Cyclic rating</td>
<td>164</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Cable short-circuit current rating</td>
<td>165</td>
</tr>
<tr>
<td>7.6</td>
<td>Cable laying mediums, formations and impressed voltages</td>
<td>165</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Types of cable laying mediums</td>
<td>165</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Single-core cable formations</td>
<td>167</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Impressed voltage</td>
<td>168</td>
</tr>
<tr>
<td>7.7</td>
<td>Cable terminations and joints</td>
<td>168</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Terminations and joints – considerations</td>
<td>168</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Cable terminations</td>
<td>168</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Cable joints</td>
<td>170</td>
</tr>
<tr>
<td>7.8</td>
<td>HV-cable type tests</td>
<td>170</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Cable type tests – requirements</td>
<td>170</td>
</tr>
<tr>
<td>7.9</td>
<td>Cable specification, design and routing</td>
<td>171</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Cable specification – considerations</td>
<td>171</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Cable overall design and routing</td>
<td>171</td>
</tr>
<tr>
<td>7.10</td>
<td>Gas insulated transmission line</td>
<td>172</td>
</tr>
<tr>
<td>7.10.1</td>
<td>GIL background</td>
<td>172</td>
</tr>
<tr>
<td>7.10.2</td>
<td>GIL construction</td>
<td>173</td>
</tr>
</tbody>
</table>
8 Substation design

8.1 Substation design considerations
8.2 Busbar systems
 8.2.1 Busbar systems – design considerations
8.3 Merits of AIS vs GIS substations
 8.3.1 AIS vs GIS considerations
8.4 AIS substation clearances
 8.4.1 AIS substation – required clearances
 8.4.2 Bay centres and bay separation
 8.4.3 Over-sailing conductors
8.5 Busbar design and forces
 8.5.1 Busbars – overview
 8.5.2 Busbar short-circuit forces
 8.5.3 Busbar withstand forces
 8.5.4 Busbar forces – design considerations
 8.5.5 Busbar insulators
8.6 Design merits of indoor vs outdoor substations
 8.6.1 Indoor vs outdoor
8.7 Substation design principles and specification
 8.7.1 Substation design principles
 8.7.2 Phasing diagram
 8.7.3 Substation design specification

9 Substation HV equipment design

9.1 Introduction
9.2 Circuit breakers
 9.2.1 Circuit breaker – duty
 9.2.2 Arc interruption mechanism
9.3 Circuit breaker switching duties
 9.3.1 Circuit breaker interrupter duties – summary
9.4 Arc interruption mediums and methods
 9.4.1 Arc interruption mediums and methods – categories
9.5 Circuit-breaker-type classification
 9.5.1 Circuit breaker type – characteristics
 9.5.2 Circuit-breaker-type and voltage-range classification
9.6 Circuit breaker tripping and close times
 9.6.1 Tripping and closing considerations
9.7 Circuit-breaker specification
 9.7.1 Electrical design specification
 9.7.2 Circuit-breaker specification standards
9.8 Earthing devices
- 9.8.1 Earthing switches – design characteristics
- 9.8.2 Metalclad switchgear
- 9.8.3 Portable earths
- 9.8.4 Interlocking and indications
- 9.8.5 Earthing device ratings

9.9 Disconnectors
- 9.9.1 Disconnectors – design characteristics
- 9.9.2 Metalclad switchgear
- 9.9.3 Disconnector interlocking and indications
- 9.9.4 Sequential disconnectors
- 9.9.5 Disconnector ratings

9.10 Interlocking
- 9.10.1 Interlocking – purpose
- 9.10.2 Computer-based interlock systems

9.11 Power transformers
- 9.11.1 Power transformers – introduction

9.12 Reactors
- 9.12.1 Reactor types

9.13 Quadrature boosters
- 9.13.1 Quadrature boosters – purpose
- 9.13.2 Quadrature booster – winding arrangements
- 9.13.3 Quadrature booster theory
- 9.13.4 Quadrature booster – physical arrangement

9.14 Manually switched capacitors
- 9.14.1 Manually switched capacitors – purpose
- 9.14.2 MSC connection arrangements

9.15 Static VAr compensators
- 9.15.1 FACTS technology
- 9.15.2 SVC alternative arrangements
- 9.15.3 SVC application

9.16 Voltage transformers
- 9.16.1 Voltage transformer – overview
- 9.16.2 Voltage transformers – types

9.17 Current transformers
- 9.17.1 Current transformers – overview
- 9.17.2 Current transformer ratings
- 9.17.3 Current transformer accuracy
- 9.17.4 Current transformer – locations

10 Protection and control systems design
- 10.1 Introduction
- 10.2 Protection types and operating characteristics
 - 10.2.1 Protection types – introduction
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Overcurrent and earth-fault protection</td>
<td>252</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Overcurrent and earth-fault protection circuitry</td>
<td>252</td>
</tr>
<tr>
<td>10.3.2</td>
<td>IDMTL overcurrent and earth-fault relay – operating characteristics</td>
<td>253</td>
</tr>
<tr>
<td>10.3.3</td>
<td>IDMTL relay – settings and grading</td>
<td>255</td>
</tr>
<tr>
<td>10.3.4</td>
<td>IDMT relay – natural grading</td>
<td>256</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Instantaneous overcurrent relay</td>
<td>257</td>
</tr>
<tr>
<td>10.4</td>
<td>Directional overcurrent protection</td>
<td>257</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Directional relays – fundamentals</td>
<td>257</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Directional overcurrent relay</td>
<td>258</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Directional earth-fault relay</td>
<td>258</td>
</tr>
<tr>
<td>10.5</td>
<td>High-impedance circulating current protection</td>
<td>259</td>
</tr>
<tr>
<td>10.5.1</td>
<td>High-impedance circulating current – background</td>
<td>259</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Circulating current protection – principles</td>
<td>260</td>
</tr>
<tr>
<td>10.5.3</td>
<td>High-impedance circulating current – stability voltage</td>
<td>260</td>
</tr>
<tr>
<td>10.5.4</td>
<td>High-impedance circulating current – primary operating current</td>
<td>261</td>
</tr>
<tr>
<td>10.5.5</td>
<td>High-impedance circulating current – applications</td>
<td>263</td>
</tr>
<tr>
<td>10.6</td>
<td>Transformer protection</td>
<td>263</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Two winding transformer – biased differential protection</td>
<td>263</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Restricted earth-fault protection</td>
<td>267</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Autotransformer overall differential protection</td>
<td>269</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Two-stage overcurrent protection</td>
<td>270</td>
</tr>
<tr>
<td>10.6.5</td>
<td>Two-stage standby-earth-fault (SBEF) relay</td>
<td>271</td>
</tr>
<tr>
<td>10.6.6</td>
<td>Transformer HV high-set overcurrent (HSOC)</td>
<td>271</td>
</tr>
<tr>
<td>10.6.7</td>
<td>Buchholz and winding temperature protection</td>
<td>272</td>
</tr>
<tr>
<td>10.7</td>
<td>Feeder-unit protection</td>
<td>272</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Feeder-unit protection – principles</td>
<td>272</td>
</tr>
<tr>
<td>10.8</td>
<td>Power line carrier protection</td>
<td>275</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Power line carrier protection – background</td>
<td>275</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Power line carrier protection – equipment and performance</td>
<td>275</td>
</tr>
<tr>
<td>10.9</td>
<td>Numeric feeder-unit protection</td>
<td>278</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Numeric feeder-unit protection – considerations</td>
<td>278</td>
</tr>
<tr>
<td>10.9.2</td>
<td>Relay characteristics</td>
<td>279</td>
</tr>
<tr>
<td>10.9.3</td>
<td>Settings considerations</td>
<td>279</td>
</tr>
<tr>
<td>10.10</td>
<td>Distance protection</td>
<td>279</td>
</tr>
<tr>
<td>10.10.1</td>
<td>Distance protection – introduction</td>
<td>279</td>
</tr>
<tr>
<td>10.11</td>
<td>Busbar protection</td>
<td>292</td>
</tr>
<tr>
<td>10.11.1</td>
<td>Busbar protection – overview</td>
<td>292</td>
</tr>
<tr>
<td>10.12</td>
<td>Circuit breaker fail protection</td>
<td>297</td>
</tr>
<tr>
<td>10.12.1</td>
<td>Circuit breaker fail – requirements</td>
<td>297</td>
</tr>
<tr>
<td>10.12.2</td>
<td>Circuit breaker fail protection – numeric relays</td>
<td>299</td>
</tr>
</tbody>
</table>
10.13 Protection, control and telecomms – communication channels 299

10.13.1 Communication channel requirements 299
10.13.2 Communication channel mediums 300
10.13.3 Communications equipment – requirements 301

10.14 Inter-tripping 301

10.14.1 Inter-tripping – application 301
10.14.2 Unstabilisation, fault throwers and neutral voltage displacement protection 303

10.15 Protection application 304

10.15.1 Protection application considerations 304
10.15.2 Protection application – feeders 305
10.15.3 Protection application – transformers 306
10.15.4 Protection application – complex circuits 309

10.16 Protection and control settings 310

10.16.1 Protection and control settings policy 310

10.17 Control systems 312

10.17.1 Control systems – introduction 312

10.18 Voltage control 312

10.18.1 Voltage control – introduction 312

10.19 Synchronising 317

10.19.1 Synchronising relay – purpose 317
10.19.2 Voltage selection scheme 319

10.20 Auto-switching 320

10.20.1 Auto-switching – introduction 320

10.21 Operational tripping 324

10.21.1 Operational tripping – requirements 324

10.22 SCADA system 326

10.22.1 SCADA system – overview 326
10.22.2 SCADA system – design 327
10.22.3 SCS design requirements 328

10.23 Protection and control accommodation 328

10.23.1 Relay panel requirements 328
10.23.2 Cubicle design and practical considerations 329

10.24 Protection and control asset replacement 330

10.24.1 Asset replacement considerations 330

10.25 Batteries and DC supplies 331

10.25.1 Battery systems 331

11 Impressed voltage 335

11.1 Impressed voltage – composition 335
11.2 Permanent and temporary works 335
11.3 Impressed voltage – principles 336

11.3.1 Capacitive coupling – principles 336
11.3.2 Inductive coupling – principles 337
11.3.3 Conductive coupling – principles 340
11.3.4 Trapped charge – principles 341
11.4 Inductive coupling – analysis
 11.4.1 Current transformer analogy
 11.4.2 Inductive coupling – position of induced emf
11.5 Physiological effects of electricity
 11.5.1 Electric shock
 11.5.2 Impedance model of the human body
 11.5.3 Electric shock – current thresholds
 11.5.4 Electric shock – voltage thresholds
 11.5.5 Touch potential – safe voltage threshold
 11.5.6 Single phase to earth fault – inductive coupling safe voltage threshold
 11.5.7 Balanced load current – inductive coupling safe voltage threshold
11.6 Capacitive coupling – IV magnitude calculations
 11.6.1 Conducting plane images
 11.6.2 Three-phase coupling
 11.6.3 Example of capacitive coupling
11.7 Inductive coupling – IV magnitude calculation
 11.7.1 Conducting plane images
 11.7.2 Three-phase coupling – balanced load current
 11.7.3 Single phase to earth fault inductive coupling
 11.7.4 Example of inductive coupling
11.8 Practical considerations
 11.8.1 Combined effect of capacitive and inductive coupling
 11.8.2 Capacitive vs inductive coupling – severity
 11.8.3 Working in an air-insulated substation
 11.8.4 Rules and guidance for controlling IV
 11.8.5 Microshocks
 11.8.6 Overhead lines
 11.8.7 Long metallic objects
 11.8.8 Operational considerations
 11.8.9 HV cables
 11.8.10 Electric field shielding
 11.8.11 Magnetic field screening
 11.8.12 GIS enclosures
 11.8.13 GIS switchgear – trapped charge
 11.8.14 Air cored reactors
 11.8.15 Electric and magnetic field design limits
11.9 The management of impressed voltages
12 Substation earthing design
 12.1 Introduction
 12.2 Objectives and regulations
 12.2.1 Historical
 12.2.2 Regulatory requirements
 12.2.3 Substation earthing objectives
13.5 Environmental works
- **13.5.1 Environmental works – overview**

13.6 OHL and HV cable civil design requirements
- **13.6.1 OHL civil design**
- **13.6.2 HV cables civil design**

13.7 Civil engineering work standards
- **13.7.1 Civil engineering standards**

13.8 Substation LV AC supplies
- **13.8.1 LV AC supply – requirements**
- **13.8.2 LV AC supply arrangements**
- **13.8.3 Design considerations**

14 Detail design, manufacture and site installation

14.1 Introduction

14.2 Detail design
- **14.2.1 Detail design – overview**
- **14.2.2 Substation HV equipment**
- **14.2.3 Protection and control**
- **14.2.4 Civil, structural and building engineering**
- **14.2.5 OHL**
- **14.2.6 HV cables**

14.3 Manufacture/procure
- **14.3.1 Manufacture/procure specification**
- **14.3.2 Manufacturing surveillance**
- **14.3.3 Manufacture/procure – detail design interface**

14.4 Site installation
- **14.4.1 Site installation – overview**
- **14.4.2 Site installation – content**
- **14.4.3 Site establishment**
- **14.4.4 Demolition/removal**
- **14.4.5 Excavation**
- **14.4.6 Piling operations**
- **14.4.7 Lifting operations**
- **14.4.8 Erection of structures**
- **14.4.9 Scaffolding**
- **14.4.10 Electricity on site**
- **14.4.11 Impressed voltages**
- **14.4.12 Road works**
- **14.4.13 Dangers arising from OHL and underground services**
- **14.4.14 Contaminated sites**
- **14.4.15 OHL considerations**
- **14.4.16 HV cable considerations**
- **14.4.17 Site installation – completion checks**
15 Equipment commissioning – technical

15.1 Commissioning – introduction 437
15.2 Test procedures and documentation 438
 15.2.1 Test procedures and documentation – overview 438
 15.2.2 Formal commissioning stages 439
15.3 Substation earthing 439
 15.3.1 Substation earthing resistance 439
 15.3.2 Substation rise of earth potential 441
15.4 Insulation resistance 441
 15.4.1 Insulation resistance – LV circuitry 441
 15.4.2 Insulation resistance – transformers 442
 15.4.3 Insulation resistance – cables 442
15.5 Current transformers 442
 15.5.1 Current transformers – requirements 442
15.6 Protection and control equipment tests 446
 15.6.1 Protection and control equipment tests – general 446
 15.6.2 Secondary injection test unit 447
15.7 VT supplies 452
 15.7.1 VT wiring – secondary injection 452
15.8 DC circuitry logic tests 453
 15.8.1 DC logic tests – requirements 453
15.9 Protection and control – common equipment 454
 15.9.1 Equipment under consideration 454
15.10 Auto-switching 459
 15.10.1 Auto-switching – general 459
15.11 HV equipment tests 462
 15.11.1 HV equipment commissioning – general 462
15.12 Substation battery systems and DC supplies 468
 15.12.1 Battery system and DC supplies 468
15.13 Loadability 469
 15.13.1 Loadability test 469
15.14 Energisation and on-load tests 469
 15.14.1 Circuit energisation and on-load tests – overview 469
15.15 Substation commissioning overview 473
 15.15.1 Substation commissioning tests and inspections 473

Part 2 Construction QMS procedures 477

Construction QMS procedures – overview 479

16 Construction delivery models and contracts 481

16.1 Introduction 481
16.2 Construction delivery risk considerations 481
 16.2.1 Construction delivery risks 481
 16.2.2 Construction design specification risk 483
 16.2.3 Single or multiple contract risk 485
16.3 Construction delivery models 485
 16.3.1 Range of construction delivery models 485
16.4 Contract price 488
 16.4.1 Types of contract price 488
16.5 Contract process and terms and conditions 490
 16.5.1 Contract process 490
 16.5.2 QMS considerations 497

17 Scheme investment procedure 499
 17.1 Scheme procedures 499
 17.2 Construction QMS procedures – structure and subject-matter 499
 17.3 Scheme investment procedure 501
 17.3.1 The scheme investment procedure – application 501
 17.3.2 Scheme investment procedure – content 501
 17.3.3 Scheme team 501
 17.3.4 Scheme timescales 502
 17.3.5 Need case 502
 17.3.6 Optioneer 503
 17.3.7 Develop 504
 17.3.8 Need case, optioneer, develop – range of documentation 509
 17.3.9 Sanction 513
 17.3.10 Scheme review/closure 513
 17.4 Major infrastructure projects 514
 17.4.1 Major infrastructure projects – outline 514
 17.4.2 Scheme alignment with the planning act 2008 514
 17.4.3 Holford and Horlock Rules 516
 17.5 Scheme investment procedure – complexity 517

18 Construction health and safety management 519
 18.1 Safety management system 519
 18.2 Health and Safety at Work etc. Act 1974 519
 18.2.1 HASWA etc. 1974 519
 18.3 Key regulations and guidance documents 521
 18.3.1 Key regulations and guidance documents 521
 18.3.2 Management of Health and Safety at Work Regulations 1999 522
 18.3.3 Control of substances hazardous to health regulations (COSHH) 2002 523
 18.3.4 Pressure system safety regulations 2000 (PSSR) 524
 18.3.5 Work at height regulations 2005 525
 18.3.6 Lifting Operations and Lifting Equipment Regulations 1998 (LOLER) 525
 18.3.7 Reporting of Injuries, Diseases and Dangerous Occurrences Regulations 2013 (RIDDOR) 526
 18.3.8 HSG168 fire safety in construction 526
18.3.9 HSG 47 avoiding danger from underground services 527
18.3.10 Provision and use of work equipment regulations 1998 (PUWER) 528
18.3.11 Person protective equipment (PPE) at work regulations 1992 528

18.4 The occupier 528
18.4.1 Occupiers liability 528
18.4.2 Occupiers Liability Act 1957/1984 529
18.4.3 HASWA 1974 and control of premises 529

18.5 Electricity at work regulations 1989 530
18.5.1 Guidance on regulations (2007) 530

18.6 Safety rules 531
18.6.1 Purpose of the safety rules 531
18.6.2 Safety rule certificates 532
18.6.3 Safety distance 535
18.6.4 Safety rule duty holder responsibilities 535
18.6.5 Safety rule practice when working on a OHL 536
18.6.6 Safety rule practice when working on HV cables 537

18.7 The addition/removal of equipment to/from the power system 537
18.7.1 Addition/removal of equipment to/from the system 537
18.7.2 Addition/removal of HV equipment to/from the system 538
18.7.3 Addition/removal of LV equipment, mechanical equipment and earthing to/from the system 540
18.7.4 Change of circuit name/equipment nomenclature 540

18.8 Temporary works 540
18.8.1 Temporary works – composition 540
18.8.2 Temporary works duty holders 541
18.8.3 Temporary works documentation 541

18.9 Construction (design and management) regulations 2015 542
18.9.1 CDM regulations – scope 542
18.9.2 CDM construction phases 543
18.9.3 CDM duty-holders 544
18.9.4 Clients 544
18.9.5 Designers 544
18.9.6 Principal designers 545
18.9.7 Principal contractors 545
18.9.8 Contractors 545
18.9.9 Workers 546
18.9.10 CDM documentation 546
18.9.11 Principal contractor – occupier interface 548
18.9.12 Sensible monitoring 550
18.9.13 Interfaces between CDM zones 551
18.9.14 Safe system of work 552
18.9.15 Setting to work 552
19 Project management procedures 555
19.1 Project management – overview 555
19.2 Project manager (power network company) 556
19.2.1 Project manager (power network company) – accountabilities 556
19.2.2 Project manager – responsibilities to be managed 556
19.2.3 The project team 557
19.2.4 Progressing a project 560
19.2.5 Project team performance 561
19.2.6 Project review meeting 562
19.2.7 Project manager – competency requirements 563
19.2.8 Equipment transfer – stages and formalities 564
19.3 Project manager (contractor) 564
19.3.1 Project manager (contractor) – accountabilities 564
19.4 Project programme 566
19.4.1 Project programme requirements – general 566
19.4.2 Project programme commercially available packages 568
19.4.3 Project programme – power network company 568
19.4.4 Project programme – contractor 569
19.5 Resource management 569
19.5.1 Resource management – requirement 569
19.5.2 Resources to be considered 570
19.6 Outage management 570
19.6.1 Outage management – requirements 570
19.6.2 Outage management – planning 571
19.7 Risk management 571
19.7.1 Risk management – requirements 571
19.7.2 Risk register 572
19.7.3 Typical risk register risks 572
19.8 Financial management 574
19.8.1 Financial management – overview 574
19.8.2 Project finance S curve 575
19.8.3 Value of work done 575
19.8.4 Project accounting – power network company 576
19.8.5 Financial asset register – power network company 578
19.8.6 Project accounting – contractor 579
19.9 Contract management 579
19.9.1 Contract management – requirements 579
19.10 Consents and wayleaves 580
19.10.1 Consents and wayleaves – overview 580
19.10.2 Bodies providing statutory consents and permits 581
19.10.3 Project management considerations 581
19.11 Project filing and project audit 582
 19.11.1 Project filing 582
 19.11.2 Project audit 583
19.12 Project quality management 584
 19.12.1 Project quality plan 584
19.13 Outstanding work and post-project review 584
 19.13.1 Outstanding work 584
 19.13.2 Post-project review 585

20 Scheme design procedures 587
 20.1 Scheme design procedures overview 587
 20.2 Design management 587
 20.2.1 Scheme design process 587
 20.2.2 Scheme design team 587
 20.2.3 Scheme design management procedure – purpose 590
 20.2.4 Scheme design management – stages 590
 20.2.5 Detail design specification 593
 20.2.6 Project design team – contractor 594
 20.2.7 Design review meetings 596
 20.3 Protection and control settings management 598
 20.3.1 P&C settings management procedure – relative importance 598
 20.3.2 P&C settings management procedure – objectives 598
 20.3.3 P&C settings management – single function relays 598
 20.3.4 P&C settings management – programmable multi-function numeric relays 599
 20.3.5 Relay settings record – administration 603
 20.3.6 Numeric relay settings process – electronic comparison 603
 20.3.7 Settings calculations’ timescales 605
 20.3.8 Relay settings process – significance 605
 20.4 Thermal rating schedules 605
 20.4.1 Equipment thermal ratings 605
 20.4.2 Continuous current ratings 606
 20.4.3 Short-term overloads – emergency ratings 606
 20.4.4 Seasonal ratings 606
 20.4.5 Cyclic rating/loading 606
 20.4.6 Transformer loading 607
 20.4.7 Protection relay loadings 607
 20.4.8 Protection tripping considerations 608
 20.4.9 Thermal rating schedules – procedural requirements 608
 20.5 Protection and automatic reclose/switching schedules 609
 20.5.1 Protection and automatic reclose/switching schedules – requirement 609
 20.5.2 Protection and automatic reclose/switching schedules – typical format 609
20.5.3 Protection and automatic reclose/switching schedules – procedural requirements 609

20.6 HV equipment nomenclature 611
20.6.1 HV Equipment nomenclature – requirement 611
20.6.2 Equipment nomenclature – procedure 611

20.7 Operation diagrams 613
20.7.1 Operation diagrams – purpose 613
20.7.2 Substation operation diagram 613
20.7.3 Substation gas zone diagram 613
20.7.4 OHL and cable route diagram 613
20.7.5 Procedural requirements 614

20.8 SCADA systems management 616
20.8.1 SCADA system management – requirements 616
20.8.2 New SCS 616
20.8.3 Addition to an existing SCS 617

20.9 Drawings management 617
20.9.1 Drawings management – requirement 617
20.9.2 Drawings manager procedure – outline 617
20.9.3 Drawing management procedure – requirements 619

21 Manufacture procedure 621
21.1 Introduction 621
21.2 Manufacturing assurance 621
21.2.1 Manufacturing assurance – requirements 621
21.3 Equipment tests 622
21.3.1 Equipment tests – requirements 622

22 Site installation procedure 625
22.1 Site installation procedure – overview 625
22.2 Site installation – stages 625
22.2.1 Site installation – the five stages 625
22.3 Equipment installation – inputs and outputs 628
22.3.1 Site installation inputs and outputs – overview 628
22.4 Site installation procedures 629
22.4.1 Site installation procedures – summary 629
22.5 Site duty holders and responsibilities 634
22.5.1 Site duty holders 634
22.6 Site installation meeting arrangements 638
22.6.1 Site installation key meetings 638
22.7 Site health and safety requirements 640
22.7.1 Site health and safety – considerations 640
22.8 Site records and documentation filing 644
22.8.1 Records and documentation filing – requirements 644
22.9 Site installation – summary 645
23 Equipment commissioning procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>647</td>
</tr>
<tr>
<td>23.2 Commissioning objectives</td>
<td>647</td>
</tr>
<tr>
<td>23.2.1 Commissioning process objectives</td>
<td>647</td>
</tr>
<tr>
<td>23.3 Management arrangements</td>
<td>648</td>
</tr>
<tr>
<td>23.3.1 Commissioning management arrangements</td>
<td>648</td>
</tr>
<tr>
<td>23.4 Commissioning Stages 1 and 2</td>
<td>650</td>
</tr>
<tr>
<td>23.4.1 Stages 1 and 2 commissioning</td>
<td>650</td>
</tr>
<tr>
<td>23.5 Commissioning programme</td>
<td>651</td>
</tr>
<tr>
<td>23.5.1 Commissioning programme – purpose and content</td>
<td>651</td>
</tr>
<tr>
<td>23.6 Commissioning inspections</td>
<td>651</td>
</tr>
<tr>
<td>23.6.1 Commissioning inspection schedules</td>
<td>651</td>
</tr>
<tr>
<td>23.7 Commissioning switching programme</td>
<td>654</td>
</tr>
<tr>
<td>23.7.1 Commissioning switching programme – purpose</td>
<td>654</td>
</tr>
<tr>
<td>23.7.2 Commissioning switching programme – content</td>
<td>654</td>
</tr>
<tr>
<td>23.8 Commissioning certificates</td>
<td>654</td>
</tr>
<tr>
<td>23.8.1 Commissioning certificates – types</td>
<td>654</td>
</tr>
<tr>
<td>23.9 Commissioning technical documentation</td>
<td>658</td>
</tr>
<tr>
<td>23.9.1 Commissioning technical documentation – types</td>
<td>658</td>
</tr>
<tr>
<td>23.9.2 Equipment commissioning documentation</td>
<td>658</td>
</tr>
<tr>
<td>23.9.3 Site-specific commissioning documentation</td>
<td>659</td>
</tr>
<tr>
<td>23.9.4 Technical and operational data</td>
<td>659</td>
</tr>
<tr>
<td>23.10 OHL and HV cable commissioning</td>
<td>660</td>
</tr>
<tr>
<td>23.10.1 OHL and HV cable commissioning – requirements</td>
<td>660</td>
</tr>
<tr>
<td>23.10.2 OHL commissioning</td>
<td>660</td>
</tr>
<tr>
<td>23.10.3 HV cable commissioning</td>
<td>660</td>
</tr>
<tr>
<td>23.11 Health and safety</td>
<td>661</td>
</tr>
<tr>
<td>23.11.1 Commissioning health and safety – considerations</td>
<td>661</td>
</tr>
<tr>
<td>23.12 Equipment decommissioning</td>
<td>662</td>
</tr>
<tr>
<td>23.12.1 Decommissioning – considerations</td>
<td>662</td>
</tr>
<tr>
<td>23.12.2 Decommissioning certificate</td>
<td>662</td>
</tr>
<tr>
<td>23.13 Commissioning roles and responsibilities</td>
<td>662</td>
</tr>
<tr>
<td>23.13.1 Key roles and responsibilities</td>
<td>662</td>
</tr>
<tr>
<td>23.14 Commissioning panel meeting agenda – and filing</td>
<td>665</td>
</tr>
<tr>
<td>23.14.1 Commissioning panel meeting agenda</td>
<td>665</td>
</tr>
<tr>
<td>23.14.2 Commissioning documentation filing</td>
<td>665</td>
</tr>
<tr>
<td>23.14.3 Commissioning process – overview</td>
<td>667</td>
</tr>
</tbody>
</table>

24 Project stage-by-stage procedure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>669</td>
</tr>
<tr>
<td>24.2 Project stage by stage – procedural requirements</td>
<td>669</td>
</tr>
<tr>
<td>24.2.1 Project stage-by-stage document – scope</td>
<td>669</td>
</tr>
<tr>
<td>24.2.2 Project stage-by-stage document – management arrangements</td>
<td>670</td>
</tr>
</tbody>
</table>