Contents

Foreword Acknowledgments	xv xvii
Part 1 Introduction	
1 Introduction to cyber-physical-social systems and in power systems engineering Siddharth Suryanarayanan, Robin Roche, and Timor	3
1.1 What is a cyber-physical system?1.2 What is a cyber-physical-social system?1.3 Applications of CPSS in power engineering1.4 Organization of the bookReferences	3 4 5 7 11
 Part 2 Stability and security of the grid 2 Distributed control design for damping inter-area oscillations in cyber-physical power networks 	
Meimanat Mahmoudi and Kevin Tomsovic	15
2.1 Introduction2.2 Power system electromechanical model with dia control input	15 stributed
 2.3 Distributed control design using group sparse refunctions 2.3.1 Distributed linear quadratic control design 	20
regularization functions 2.4 Application I: inducing a desired communication damping inter-area oscillations in power network	22 on structure for tks 24
2.4.1 Illustration on the two-area four-machine2.5 Application II: control and communication codeinter-area oscillations in power networks	•
2.6 Conclusion Acknowledgment References	33 34 34

3	cyb Jiai	cributed algorithms for wide-area monitoring of power systems: a er-physical perspective <i>ahua Zhang, Seyedbehzad Nabavi, Aranya Chakrabortty,</i> <i>Yufeng Xin</i>	39
	3.1	Introduction	39
	3.2	Problem formulation	42
	3.3	Modal estimation using Prony method	43
	3.4	Proposed architectures for distributed modal estimation 3.4.1 Architecture 1: distributed Prony using standard	44
		ADMM (S-ADMM)	45
		3.4.2 Architecture 1 with asynchronous communication	47
		(A-ADMM)	47
		3.4.3 Architecture 2: distributed Prony using distributed	40
		ADMM (D-ADMM)	48
		3.4.4 Architecture 3: distributed Prony using hierarchical	51
	25	ADMM (H-ADMM) Update strategies for asynchronous communication	51 53
	3.3	3.5.1 Delay model for wide-area communication	53 54
		3.5.2 Proposed A-ADMM strategies	55
	36	Case studies of proposed architectures	60
		Simulation results for asynchronous ADMM strategies	64
	5.7	3.7.1 S-ADMM vs A-ADMM	64
		3.7.2 Sensitivity of A-ADMM to delay thresholds	67
	38	Conclusions	71
		erences	72
4		per-physical strategies for generator coherency in the	
		e of malicious attack athayini Srikantha, Jin (Wei) Kocsis, and Deepa Kundur	75
	4.1	Introduction	75
	4.2	System settings	76
		4.2.1 Cyber-physical dynamical smart grid model	77
		4.2.2 Smart grid stability	78
	4.3	Flocking-based control for smart grid resilience	78
		4.3.1 Flocking analogy	78
		4.3.2 Two-tier hierarchy for scalable control	79
		4.3.3 Control laws for lead agents	82
		4.3.4 Generator coherency identification	83
		4.3.5 Case study	84
	4.4	DER attack-mitigation framework	87
		4.4.1 A pursuer-evader analogy for grid destabilization	88
		4.4.2 Nonlinear attack-mitigation differential game	88
		4.4.3 Construction of attack-mitigation control strategies	90
		4.4.4 Case study	91

Contents	vii	

		Final remarks erences	92 95
	Kei		95
5		namic contingency analysis and remedial action tools for secure etric cyber-physical systems	97
	Joy	deep Mitra, Mohammed Benidris, and Nga Nguyen	
	5.1	Introduction	98
	5.2	On-line transient stability assessment	99
	5.3	System model and transient stability – direct methods	100
	5.4	Calculation of the controlling UEP	102
		5.4.1 Characterization of the region of convergence of the	
		controlling UEPs	103
		5.4.2 BCU-based approach	103
		5.4.3 Homotopy-based methods	105
	5.5	Approaches for remedial actions	107
		5.5.1 Energy margin and sensitivity analysis-based remedial	100
		action control	108
		5.5.2 Preventive actions based on generation shifting5.5.3 Preventive actions with FACTS devices	115
		5.5.4 Corrective actions	116
	56	Example	119 124
		Conclusion	124
		erences	128
	itei		120
P	art 3	New philosophies of control and economics in distribution systems	
6	Сш	stomer modeling and pricing-mechanisms for demand response	
U		mart electric distribution grids	135
		nothy M. Hansen, Robin Roche, Siddharth Suryanarayanan,	155
		hony A. Maciejewski, Howard Jay Siegel, and Edwin K. P. Chong	
		Customer modeling introduction	136
	6.2	Aggregator-based residential demand response	138
		6.2.1 CPSS	138
		6.2.2 Aggregator	139
		6.2.3 Aggregator demand response	139
	()	6.2.4 Aggregator profit function	141
	0.3	Customer models	141
		6.3.1 Customer overview: Gamma parameter6.3.2 Alpha model	141 142
		6.3.3 Customer loads	142
	6.4	Pricing mechanisms	144
		Heuristic framework	144
	0.5	6.5.1 Problem formulation	146
		6.5.2 Genetic algorithm implementation	147
			1.7

6.7	6.6.1		148 148 149 156 157
		n of the agent-based technology	
to i	nvoke d	lemand flexibility under the	161
		rtado, Phuong H. Nguyen, and Wil L. Kling	101
7.1	Introd	luction to the concept of demand flexibility	162
		Demand side management and demand response	162
	7.1.2	Operational flexibility	163
	7.1.3	Demand flexibility	164
	7.1.4	Emerging energy systems	166
7.2	The S	G-BEMS interoperation framework	167
	7.2.1	Framework domains	167
	7.2.2	Roles and responsibility	168
	7.2.3	Services	169
	7.2.4	Operation scheme	169
7.3	New o	control philosophy	170
	7.3.1	Agent-based control	171
	7.3.2	The SG-BEMS structure	172
7.4	Applie	cation of the agent-based control architecture	173
	7.4.1	The models	173
	7.4.2	Optimization problem	177
	7.4.3	Simulation-based case study	179
	7.4.4	Simulation results	181
Ref	erences		190

in cyber-physical-social systems Wencong Su, Rui Ma, and Shengyao Xu		
8.1 Introduction	194	
8.2 Electrified transportation system in a CPSS environment	196	
8.2.1 "Physical" infrastructure	198	
8.2.2 "Cyber" infrastructure	200	
8.2.3 "Social" considerations	207	
8.3 Future research trends	210	
8.4 Conclusions	212	
Acknowledgment		
References		

9		easing local renewable energy use in smart neighborhoods	
		ugh coordinated trading	217
	Berk	Celik, Robin Roche, David Bouquain, and Abdellatif Miraoui	
	9.1	Introduction	217
	9.2	System model	220
		9.2.1 Modeling approach	220
		9.2.2 Smart home model	221
		9.2.3 Neighborhood model	225
		9.2.4 Electricity price model	225
	9.3	Control Strategies	227
		9.3.1 Baseline algorithm	227
		9.3.2 Selfish energy management	228
		9.3.3 Coordinated Management: distributed	229
		9.3.4 Coordinated Management: centralized	238
	9.4	Simulation Results	240
		9.4.1 Simulation setup	241
		9.4.2 Overall cost comparison	241
		9.4.3 Detailed analysis	242
	9.5	Discussion	247
		9.5.1 Overview of Results	247
		9.5.2 Next steps	249
	9.6	Conclusion	250
	Refe	rences	250
10	Com	pensation of droop control in DC microgrid with multiple	
		ibuted generators	253
		ang Yang, Damien Paire, Fei Gao, and Abdellatif Miraoui	
	10.1	Introduction	254
		10.1.1 Active current sharing schemes	254
		10.1.2 Droop control technique	256
		10.1.3 Compensations of droop control	257
	10.2	Analysis of the basic droop control	259
		10.2.1 Nominal voltage reference offset	260
		10.2.2 Unequal cable resistances	263
	10.3	Compensation of the basic droop control	263
		10.3.1 Voltage restoration methods	264
		10.3.2 Load sharing compensation	266
		10.3.3 Mixed methods	266
	10.4	Implementation and analysis of the compensation	268
		10.4.1 Voltage deviation compensation	269
		10.4.2 Load sharing compensation	269
		10.4.3 Stability analysis	270
	10.5	Simulation	272

		10.5.1 Simulation setup	272
		10.5.2 Simulation results	274
		10.5.3 Evaluation of the compensation methods	277
	10.6	Experimental verification	279
		10.6.1 Experiment setup	279
		10.6.2 Load steps analysis	282
	10.7	Conclusion	283
	Refe	rences	286
11		perative responsive electric vehicles for	
		l-economic dispatch	291
	Meha	li Rahmani-andebili and Ganesh Kumar Venayagamoorthy	
	11.1	Introduction	294
	11.2	Sustainability indictors	295
		11.2.1 Social sustainability indicator	295
		11.2.2 Economic sustainability indicator	295
	11.3	Responsiveness model of the REVs with respect	
		to incentive scheme	296
	11.4	SED-REVs problem	296
		11.4.1 Objective function of the SED-REVs problem	298
		11.4.2 Constraints of the SED-REVs problem	300
	11.5	Proposed optimization technique	301
		11.5.1 Stochastic optimization	301
		11.5.2 Forecasting uncertain states of the problem	302
		11.5.3 Modeling uncertainties of the forecasted data	303
		11.5.4 SA algorithm as the optimization tool	305
	11.6	Numerical study and results analysis	307
		11.6.1 Initial data	307
		11.6.2 Studying the system with a predefined scheme of	
		incentive	307
		11.6.3 Investigating optimal scheme of incentive	310
		Conclusion	313
		lowledgment	313
	Refe	rences	313
Pa	rt 4	Social aspects and implementations	
12		u build it, will they come? Getting consumers on board with	
		uture of the smart grid cia A. Aloise-Young, Jennifer E. Cross, and Perla K. Sandoval	319
			210
		Introduction	319
	12.2	Smart homes	320
		12.2.1 Smart thermostats and smart appliances	321

324

12.2.2 Summary

	12.3	Smart meters	325
		12.3.1 Smart meter backlash	325
		12.3.2 Shortcomings of the PG&E deployment	326
		12.3.3 Summary	333
	12.4	Distributed generation	333
		12.4.1 Community-based social marketing	334
		12.4.2 Summary	338
	12.5	Conclusions	338
	Refe	rences	340
13	Risk	s, threats and mitigation strategies for SCADA systems	345
	Helg	e Janicke, Allan Cook, Andrew Nicholson, and Kevin Jones	
	13.1	Introduction	345
		13.1.1 Components of industrial control systems	347
	13.2	Security technologies and their role in ICS protection	351
		13.2.1 Level 5	351
		13.2.2 Level 4	352
		13.2.3 Level 3	352
		13.2.4 Level 2	353
		13.2.5 Level 1 and Level 0	354
	13.3	Managing threats to ICS/SCADA	355
		13.3.1 Attribution of attacks against ICS/SCADA	355
		13.3.2 Traceback techniques	356
		13.3.3 Honeypots	359
		13.3.4 Malware analysis	361
	12.4	13.3.5 An intelligence-led attribution approach Post-incident forensics in ICS/SCADA	362
		Conclusion	363 365
		rences	365
14		apant-engaged fast demand response for commercial buildings Song, Xianjun Sam Zheng, and Sanjeev Srivastava	371
	14.1	Introduction	372
		14.1.1 Introduction to demand response	372
		14.1.2 Commercial buildings as cyber-physical-social systems	373
		14.1.3 Occupant-engaged DR	378
	14.2	Collaborative, occupant-engaged fast demand responses	380
		14.2.1 The software architecture of cEMC	380
		14.2.2 Design for engaging human-machine interface: Occupants'	
		Dashboard and FM's HMI	381
		14.2.3 Temperature and ventilation arbitrations using convex	
		optimization	387
		14.2.4 Collaboration for DR scenarios	392
		14.2.5 Energy split algorithm for energy games	393

	14.3	Experimental study	396
		14.3.1 Deployment site	396
		14.3.2 Baseline setup	396
		14.3.3 Field experiment	397
	14.4	Conclusions and future work	400
	Ackr	nowledgments	401
	Refe	rences	401
Pa	rt 5	Testbeds for validation of the research concepts	
15	A tes	stbed for closed-loop cyber-physical-social system	
	simu	llation and security analysis	407
	Ren	Liu, Ryan Goodfellow, and Anurag K. Srivastava	
	15.1	Introduction	408
		15.1.1 Smart grid: cyber-physical-social system	408
		15.1.2 Need and challenges for cyber-physical-social testbeds	408
		15.1.3 Types of power grid cyber-physical testbeds	410
		15.1.4 Existing cyber-physical testbed	413
	15.2	Developed cyber-physical testbed	414
		15.2.1 Power system layer	415
		15.2.2 Monitoring layer	416
		15.2.3 Communication layer	417
		15.2.4 Control and application layer	423
		Summary	430
		nowledgments	430
	Refe	rences	431
16	Cyb	er-physical-social system security testbeds for an attack-resilient	
	sma	rt grid	433
	Adity	va Ashok, Pengyuan Wang, and Manimaran Govindarasu	
		Need for testbeds	433
		Testbed design objectives and challenges	434
		Conceptual testbed architecture	435
		State-of-the-art – literature review	436
		Testbed research areas	437
	16.6	Testbed Federation	438
		16.6.1 Proof-of-concept federation architecture – Smart America challenge	439
	167	Case study application – Coordinated cyber attacks on WAMPAC	440
	10.7	16.7.1 Coordinated attack vector	443
		16.7.2 Impact analysis	444
	16.8	Educational and outreach aspects	447
		Conclusion	447
		rences	448

Mani Marij	ibuted real-time simulations for electric power engineering sh Mohanpurkar, Mayank Panwar, Sayonsom Chanda, ja Stevic, Rob Hovsapian, Vahan Gevorgian, aarth Suryanarayanan, and Antonello Monti	451
17.1	Introduction	452
17.2	Distributed real-time simulations	452
	17.2.1 Philosophy of distributed real-time simulation	453
	17.2.2 Transmission-distribution-communication co-simulation	455
17.3	Historical efforts in distributed RTS	457
	17.3.1 Remote testing and distributed simulation based on the	
	virtual test-bed	457
	17.3.2 Multiple university research initiative	458
	17.3.3 Cyber-security test-bed and testing	458
	17.3.4 Geographically distributed thermo-electric	450
	co-simulation	459
	17.3.5 A modular architecture for virtually interconnected	450
	laboratories	459
174	17.3.6 Automotive engineering application	460
1/.4	Systematic approach toward distributed real-time simulations	460
	17.4.1 Objectives and assumptions	460
1.7.5	17.4.2 Impacts of data latency	463
17.5	Distributed RTS between INL and NREL	464
	17.5.1 Experimental setup	464
	17.5.2 Latency analysis between INL and NREL	466
17 (17.5.3 Simulation results	467
1/.6	Modular architecture for interconnected laboratories	469
	17.6.1 Generic design approach	469
177	17.6.2 Hybrid interface design	471
1/./	Applications of distributed real-time simulations	476
	17.7.1 Wind and hydropower research	476
17.0	17.7.2 Hydrogen applications in power systems research	479
	Concluding remarks and future work	480
Refe	rences	481

Index

487