Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
<td></td>
</tr>
</tbody>
</table>

1 Origin of clean energy systems

Shin’ya Obara

1.1 Introduction: origin of clean energy systems | 1 |
1.2 Dynamic operational scheduling for a microgrid with renewable energy | 2 |
1.2.1 Introduction | 2 |
1.2.2 Independent microgrid with renewable energy and battery | 2 |
1.2.3 Power balance and objective function | 5 |
1.2.4 Analysis method | 6 |
1.2.5 Case analysis | 10 |
1.2.6 Analysis results | 11 |
1.2.7 Conclusions | 20 |
1.3 Operation analysis of microgrids using an orthogonal array-GA hybrid method | 20 |
1.3.1 Introduction | 20 |
1.3.2 Analysis methods | 22 |
1.3.3 Case study | 29 |
1.3.4 Analysis results | 38 |
1.3.5 Conclusions | 45 |

Nomenclature | 46 |
References | 48 |

2 Key concepts

Shin’ya Obara

2.1 Introduction: key concepts | 51 |
2.2 Dynamic-characteristics analysis of an independent microgrid with an SOFC triple combined cycle | 52 |
2.2.1 Introduction | 52 |
2.2.2 System configuration | 53 |
2.2.3 Modelling of equipment | 56 |
2.2.4 System configuration of SOFC triple combined cycle | 62 |
2.2.5 Analysis conditions | 65 |
Clean energy microgrids

2.2.6 Dynamic-characteristics analysis of an SOFC 67
2.2.7 Dynamic characteristics of SOFC triple combined cycle (SOFC-TCC) 68
2.2.8 Conclusions 74

2.3 Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics and a pumped-storage power station 74
2.3.1 Introduction 74
2.3.2 Materials and methods 76
2.3.3 Example of the proposed microgrid analysis 89
2.3.4 Results of analysis and discussions 93
2.3.5 Conclusion 98

Nomenclature 100
References 104

3 Control and energy management system in microgrids 109
Wencong Su

3.1 Introduction 109
3.2 Protection and control of microgrids 111
3.2.1 Microgrids protection 112
3.2.2 Control approach of microgrid control 112
3.3 Energy management aspects of microgrids 117
3.4 Demand response and demand-side management 118
3.5 Home energy management system 121
3.6 Energy management with SCADA 123
3.7 Supporting infrastructure 125
3.7.1 Smart meters systems 125
3.7.2 Advanced metering infrastructure 126
3.7.3 Privacy and security of smart meters 127
3.8 Conclusion and future research trends 129
References 129

4 Storage systems for microgrids 135
Shin’ya Obara

4.1 Introduction: storage systems for microgrids 135
4.2 Operation planning for a compound microgrid containing a PEFC and photovoltaics with prediction of electricity production using GA and NWI 136
4.2.1 Introduction 136
4.2.2 System configurations 136
4.2.3 Analysis method 139
4.2.4 Case analysis 143
4.2.5 Results and discussion 145
4.2.6 Conclusion 152
4.3 Economic efficiency of a renewable energy-independent microgrid with energy storage using a sodium–sulphur battery or organic chemical hydride

4.3.1 Introduction 153
4.3.2 Proposed system 154
4.3.3 System components 155
4.3.4 Control method 164
4.3.5 Analysis example 165
4.3.6 Results and discussion 169
4.3.7 Conclusions 175

Nomenclature 176
References 178

5 Reliability and power quality 181

Jorge Morel

5.1 Introduction 181
5.1.1 Overview 181
5.1.2 Chapter’s aim and scope 181
5.2 Power quality 182
5.2.1 What is power quality? 182
5.2.2 Why power quality is important? 183
5.2.3 Smart grids and power-quality issues 183
5.2.4 The concept of virtual generator in microgrids 184
5.3 Reliability 187
5.3.1 What is reliability? 187
5.3.2 Interoperability 188
5.3.3 Cybersecurity 189
5.3.4 Flexible operation and self-healing 189
5.3.5 Demand response 190
5.3.6 Smart grids and microgrid standards 190
5.4 Case study 190
5.4.1 Introduction 190
5.4.2 Study system 192
5.4.3 Control strategy 196
5.4.4 Scenario construction 197
5.4.5 Simulation results 198
5.4.6 Conclusion 201

References 202

6 Clean generation in microgrids 207

Jorge Morel

6.1 Introduction 207
6.1.1 Overview 207
6.1.2 Chapter’s aim and scope 207
7 Microgrids in Japan

Jorge Morel

7.1 Introduction
7.1.1 Overview
7.1.2 Chapter’s aim and scope
7.1.3 Status before the Fukushima nuclear accident
7.1.4 Impact of Fukushima nuclear accident on microgrid development
7.1.5 Author’s personal experience

7.2 Current Japan energy policy
7.2.1 The Japanese energy sector
7.2.2 The Japanese electricity sector
7.2.3 New policy following the Fukushima nuclear accident

7.3 Pilot projects in Japan and abroad
7.3.1 Earliest microgrid projects
7.3.2 Smart community projects
7.3.3 International projects

References

8 Microgrids in Europe

Sergio Rivera and Tomas Valencia

8.1 Introduction: the European electrical power system
8.1.1 General description
8.1.2 The transformation of the European power system

References
8.2 Microgrids research in Europe 261
8.3 Microgrid patents and companies in Europe 263
 8.3.1 Microgrids patents in Europe 263
 8.3.2 European companies with services on microgrids 264
8.4 Current microgrids projects in Europe 265
 8.4.1 Am Steinweg (Germany) 268
 8.4.2 Mannheim-Wallstadt (Germany) 268
 8.4.3 AEG microgrid in Warstein-Belecke (Germany) 269
 8.4.4 Wildpoldsried im Allgäu (Germany) 269
 8.4.5 ISET, Kassel (Germany) 270
 8.4.6 Feldheim (Germany) 271
 8.4.7 Kythnos (Greece) 271
 8.4.8 ICCS-NTUA (Greece) 272
 8.4.9 CESI Ricerca DER test facility (Italy) 272
 8.4.10 University of Genoa – Savona Campus (Italy) 273
 8.4.11 EDP swimming pool (Portugal) 274
 8.4.12 Factory microgrid (Spain) 274
 8.4.13 Atenea (Spain) 275
 8.4.14 Labein Experimental Centre (now Tecnalia) (Spain) 275
 8.4.15 Centre for Alternative Technology (Wales) 275
 8.4.16 UK Microgrid (England) 275
 8.4.17 Isle of Eigg (Scotland) 276
 8.4.18 Continuon (The Netherlands) 276
 8.4.19 Power Matching City (The Netherlands) 276
 8.4.20 Energie Kanton Zürich (EKZ) (Switzerland) 277
 8.4.21 Nice Grid (France) 277
8.5 Microgrids perspectives in Europe 278
References 279

9 Microgrids in the United States 283
Sergio Rivera and Miguel Leon

9.1 Introduction: USA electrical infrastructure 283
9.2 Microgrid research, technology, standards and policy in the USA 285
 9.2.1 Microgrid research in the USA 285
 9.2.2 Microgrids technology in the USA 288
 9.2.3 Clean energy standards and policy in the USA 291
9.3 Cases of microgrid projects in the USA 293
 9.3.1 Microgrid in University of California 298
 9.3.2 Fort Carson microgrid 298
 9.3.3 Mesa del Sol microgrid 299
 9.3.4 Santa Rita Jail microgrid 299
 9.3.5 Borrego Springs microgrid 300
 9.3.6 Illinois microgrid 300
 9.3.7 Hawaii Hydrogen Power Park 302
 9.3.8 Kodiak microgrid 302
Clean energy microgrids

9.3.9 Microgrid in University of Wisconsin Madison 302
9.3.10 Microgrid in University of Miami 303
9.3.11 Microgrid in University of Texas at Arlington 304
9.3.12 Microgrid in Florida International University 305
9.3.13 Microgrid in University of Texas at Austin 305
9.3.14 Microgrid in Albuquerque 305

9.4 Envisaged data of microgrids in the USA 307
References 308

10 Microgrids in developing countries 313

Sergio Rivera, Wiston Ñustes, Miguel León and Juan Rodríguez

10.1 Developing countries and their electrical infrastructure 313
10.2 Microgrids research in developing countries 316
10.3 Microgrids technology in developing countries 318
10.3.1 Latin America: Argentina and Brazil cases 319
10.3.2 Asia 320
10.4 Clean energy standards and policy in developing countries 322
10.4.1 Latin America 323
10.4.2 Asia 324
10.4.3 Africa 326

10.5 Current microgrids projects in developing countries 327
10.5.1 Armstrong Microgrid (Argentina) 327
10.5.2 District Power Plant Microgrid (Brazil) 327
10.5.3 Lençois Island Microgrid (Brazil) 327
10.5.4 Microgrid in sustainable building of the Federal University of Juiz de Fora (Brazil) 327
10.5.5 Huatacondo Microgrid (Chile) 334
10.5.6 UPB Microgrid (Colombia) 334
10.5.7 Santa Cruz del Islote Microgrid (Colombia) 336
10.5.8 Photovoltaic project in Baltra Island and Puerto Ayora (Ecuador) 337
10.5.9 Hybrid Project Isabela (Ecuador) 337
10.5.10 Microgrid in Hangzhou Dianzi Technology University (China) 338
10.5.11 Microgrid in Langfang Eco-Smart City (China) 338
10.5.12 Microgrid in Chengde (China) 338
10.5.13 Mae-Sariang (Chiang Mai) Microgrid (Thailand) 339
10.5.14 Mae Hong Son microgrid (Thailand) 340
10.5.15 Community microgrids in India (Dhamai, Sundarbans Islands, Sagar Island) 340

References 342

Index 349