Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the editors</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxiii</td>
</tr>
<tr>
<td>1 Introduction to enhanced living environments</td>
<td>1</td>
</tr>
<tr>
<td>Ciprian Dobre, Ivan Ganchev, Nuno M. Garcia, Rossitza Goleva and Carlos Alberto Valderrama</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 An overview of healthcare systems</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Ambient assisted living and enhanced living environments</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Conclusions</td>
<td>14</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
<tr>
<td>Biographies</td>
<td>18</td>
</tr>
<tr>
<td>2 Enhanced living environments from the viewpoint of socioecological psychology</td>
<td>21</td>
</tr>
<tr>
<td>Tamás Martos and Viola Sallay</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Socioecological psychology as a framework</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Concept of ‘human niche construction’ as a universal human phenomenon</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Home as a niche</td>
<td>24</td>
</tr>
<tr>
<td>2.4.1 Emotional processes in the home: lessons learnt with the Emotional Map of the Home Interview</td>
<td>25</td>
</tr>
<tr>
<td>2.5 Legacy of Self-determination theory</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1 Core concepts of SDT</td>
<td>28</td>
</tr>
<tr>
<td>2.6 Putting it all together: socioecological psychological aspects of ELE</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 ELE as niche construction</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2 ELE and home niches: the potential places of technology in a complex system</td>
<td>34</td>
</tr>
<tr>
<td>2.6.3 Constructing ELE solutions in home niches: the importance of psychological need support</td>
<td>36</td>
</tr>
</tbody>
</table>
3 Pervasive sensing for social connectedness

Kadian Davis, Evans B. Owusu, Lucio Marcenaro, Jun Hu, Carlo S. Regazzoni, and Loe Feijs

Abstract

3.1 Introduction

3.1.1 Social isolation and loneliness as risk factors

3.1.2 Ambient assisted living

3.2 A user-centred approach for designing systems to support social connectedness

3.2.1 A user-centred design process

3.3 Context-aware systems for social connectedness

3.4 Pervasive sensing and models for HAR

3.5 A case study evaluating the HMM-SVM model

3.6 Context-aware connectedness systems

3.7 Experimental results

3.7.1 Perceptions on context-aware solutions for social connectedness

3.7.2 HAR-based activity displays for social connectedness

3.8 Challenges

3.9 Conclusion

Acknowledgements

References

Further reading

Biographies
5 End-users’ AAL and ELE service scenarios in smart personal environments
Serge Autexier, Rossitza Goleva, Nuno M. Garcia, Rumen Stainov, Ivan Ganchev, Constantinos X. Mavromoustakis, Ciprian Dobre, Ivan Chorbev, Vladimir Trajkovik, and Eftim Zdravevski

Abstract

5.1 Introduction
5.2 State of the art
5.3 Living lab architecture
5.4 End-user groups
5.5 From single user and single sensor to the cloud and back
5.6 Scenarios
5.7 Customized ELE ICT services
5.8 Conclusions and further research directions

Acknowledgements
References
Further reading
Biographies

6 Technological support to stress-level monitoring
Valentina Markova and Todor Ganchev

Abstract

6.1 Introduction
6.2 State-of-the-art personal health monitoring systems
 6.2.1 Physiological parameters and stress
 6.2.2 Overview of system architectures
 6.2.3 Short-range wireless network technology
6.3 Stress and emotion assessment
 6.3.1 Stress assessment procedure
 6.3.2 Emotion recognition
6.4 Use cases
 6.4.1 Stationary setup
 6.4.2 Mobile setup
 6.4.3 Recent projects
 6.4.4 SLADE application scenario
6.5 Future technology in support of stress monitoring and management

References
Further reading
List of abbreviations
Biographies
7 Big data healthcare system to improve healthcare information searching in the Internet
Mariya Savova Evtimova

Abstract
7.1 Introduction
7.2 Intelligent agents’ advantages and characteristics
7.3 Fuzzy logic and probability
7.4 Meaning of big data in a personalized search of uncertain and vague information
 7.4.1 Value and demand in-depth analysis
 7.4.2 Variety and heterogeneity of data
 7.4.3 Quality of data
 7.4.4 Volume and size of data
 7.4.5 Speed and timeliness of the data
7.5 Rule-based and case-based reasoning
7.6 Related work
7.7 Agent-based system for personalized searching
 7.7.1 Aims and tasks of the developed system
 7.7.2 Conceptual model for personalized semantic search system when the information in the query is fuzzy and uncertain
7.8 Concept of building a customized profile
 7.8.1 Approaches and methods for collecting user information
 7.8.2 Conceptual scheme of the user profile
7.9 Development of applied subjective ontology: problems and approaches
 7.9.1 Storing the knowledge in the fuzzy ontology of the proposed semantic system
 7.9.2 Fuzzification process in case-based ontology
 7.9.3 Design of the fuzzy and vague case-based ontology
7.10 Description of the process of reasoning
7.11 Metrics for evaluating the quality of the returned results from the search system
7.12 Conclusions

References
Further reading
List of abbreviations
Biography

8 Sensors for wireless body area networks
Ivelina Nikolaeva Ruskova and Elitsa Emilova Gieva

Abstract
8.1 Introduction: wireless body area networks and wireless sensor network 183
8.2 Sensor node 184
8.3 Overview of sensor characteristics 192
8.4 WBAN technologies 199
 8.4.1 Applications depending on the technology 200
8.5 Conclusion 202
References 202
Further reading 204
Biographies 204

9 AALaaS/ELEaaS platforms 207
Rossitza Goleva, Mara Pudane, Sintija Petrovica, Egons Lavendelis, Karl Kreiner, Mario Drobics, Ivan Ganchev, Nuno M. Garcia, Rumen Stainov, Ciprian Dobre, Constandinos X. Mavromoustakis, Ivan Chorbev, Vladimir Trajkovik, Eftim Zdravevski, and George Mastorakis
Abstract 207
9.1 Introduction 208
9.2 State of the art 209
9.3 Generic AALaaS/ELEaaS architecture 210
9.4 Affective computing mapping implementation 216
9.5 KIOLA platform implementation 220
9.6 AAL/ELE laboratory and home implementation 223
9.7 Conclusion and further research plan 224
Acknowledgements 224
References 224
Further reading 229
Biographies 229

10 Linear wireless sensor networks and protocols in the next-generation networks 235
Radosveta I. Sokullu and Eren Demir
Abstract 235
10.1 Introduction 236
10.2 Linear wireless sensor networks 237
 10.2.1 Network model 237
 10.2.2 Variations of LWSNs 238
 10.2.3 Objectives and challenges of LWSNs 240
10.3 MAC protocols for LWSNs 241
10.4 Open research issues 262
10.5 Conclusion 262
References 263
11 Model-compilation challenges for cyber-physical systems 269

Belgacem Ben Hedia, Chokri Mraidha, Etienne Hamelin, and Sara Tucci-Piergiovanni

Abstract 269
11.1 Introduction 269
11.2 CPS challenges 272
11.3 Model-compilation methodology and approach 275
 11.3.1 Front-end: from multiple heterogeneous high-level models 275
 11.3.2 Middle-end: model-compilation into SwArch 280
 11.3.3 Back-end: transformation into concrete target platforms 283
 11.3.4 Design iterations 283
11.4 Model-compilation methodology assessment 284
 11.4.1 Applicability of model-compilation approach 284
 11.4.2 Productivity enhancements 285
11.5 Related works 285
 11.5.1 Model-based methodologies for safety and timing 285
 11.5.2 Model-compilation 286
 11.5.3 Physical modelling 287
11.6 Conclusion 288

References 288
Biographies 291

12 Health monitoring using WBAN: topology design, routing and thermal issues 293

Abstract 293
12.1 Introduction 293
 12.1.1 Applications 295
 12.1.2 WBAN wireless technologies 298
 12.1.3 WBAN infrastructure 300
 12.1.4 Energy efficiency 300
 12.1.5 Approaches to achieve energy efficiency 300
12.2 Energy-aware topology design 301
 12.2.1 Optimization of relay nodes placement 304
12.3 SAR analysis
 12.3.1 Using low transmission power level to reduce SAR 305
 12.3.2 Impact of frequency band on SAR values 305
 12.3.3 Impact of high SAR on human body 305
12.4 Energy efficient and SAR-aware routing 306
 12.4.1 Energy-efficient routing 306
 12.4.2 SAR-aware routing 308
12.5 Conclusion 309
References 309
Biographies 313

13 Wearable health care: technology evolution, algorithms and needs 315
Raluca Maria Aileni, Sever Pasca, Carlos Alberto Valderrama, and Rodica Strungaru

Abstract 315
13.1 Introduction 315
13.2 Wearable technology evolution 316
13.3 Healthcare perspectives for wearable devices 324
13.4 Algorithms dedicated to wearable technologies 325
 13.4.1 Case 1: wearable sensors for body temperature monitoring 326
 13.4.2 Case 2: wearable sensors for human skin conductance response 331
 13.4.3 Case 3: wearable sensors for human activity monitoring 332
13.5 Wearable: user needs and expectations 334
13.6 Future wearable challenges 335
13.7 Conclusions 337
Acknowledgements 338
References 338
Biographies 342

14 Intelligent system for after-stroke home rehabilitation 345
Nirvana Popescu, Marian-Silviu Poboroniuc, Decebal Popescu, Dănuț Irimia, and Alexandru Valer Grigoraș

Abstract 345
14.1 Introduction 345
14.2 Design and development of the IHRG structure 348
14.3 Voice control approach 349
 14.3.1 Hardware and software design 349
 14.3.2 Experiments with vocal commands 352
14.4 Predefined recovery exercises system for home use 353
Enhanced living environments: from models to technologies

14.5 Hybrid FES-robotic glove approach 354
 14.5.1 Hybrid system description 354
 14.5.2 Experimental results 358
 14.5.3 Statistical analysis 360
14.6 Conclusion 364
References 365
Biographies 366

Index 369