Contents

1 Technologies and applications for active and assisted living—current situation 1
Alexandros Andre Chaaraoui and Francisco Florez-Revuelta
1.1 Introduction 1
1.2 Technologies for AAL 3
1.3 Applications for AAL 5
1.4 Associated issues and case studies 7
References 8

Part 1 Technologies for Active and Assisted Living

2 Current state of the art of smart environments and labs from an ambient assisted living point of view 11
Aaron S. Crandall and Diane J. Cook
2.1 Introduction 12
2.1.1 Areas of technology advancement 13
2.2 AAL smart home research groups 15
2.2.1 European network of living labs 16
2.2.2 TigerPlace—University of Missouri 16
2.2.3 Aware home research initiative—Georgia Tech 16
2.2.4 Future care lab—RWTH Aachen University 16
2.2.5 Distributed systems group—ETH, Zurich 17
2.2.6 Smart environments research center—Washington State University 17
2.2.7 POSEiDON Project—Middlesex University 17
2.2.8 ORCATECH—Oregon Health and Science University 17
2.2.9 Intelligent assistive technology and systems lab—University of Toronto 17
2.2.10 Smart medical home—University of Rochester 18
2.2.11 mHealth research group—Northeastern University 18
2.2.12 Research groups summary 18
2.3 Commercial AAL smart home technologies 18
2.3.1 In-home health care companies 18
2.3.2 Home automation devices 19
2.3.3 In-home energy management offerings 22
2.3.4 Commercial AAL smart home summary 23
2.4 Conclusion 23
References 23
3 Ambient and wearable sensors for human health monitoring 29
Mary Rodgers, Vinay Pai and Richard Conroy
3.1 Introduction 29
3.2 Wearable sensor technologies 30
 3.2.1 Activity monitors 31
 3.2.2 Physiological monitors 32
 3.2.3 Environmental monitors 34
3.3 Ambient sensors 35
 3.3.1 Motion sensors 38
 3.3.2 Proximity and location-based sensors 40
 3.3.3 Environment sensors 41
 3.3.4 Sensor informatics 42
3.4 Conclusions 43
 3.4.1 Future directions 44
References 46

4 Computer vision for active and assisted living 57
Rainer Planinc, Alexandros Andre Chaaraoui, Martin Kampel, and Francisco Florez-Revuelta
4.1 Introduction 57
4.2 Using RGB cameras 58
 4.2.1 Applications 58
 4.2.2 Image processing stages 59
4.3 Using depth sensors 65
 4.3.1 Skeletal 66
 4.3.2 Depth maps 67
 4.3.3 Point clouds 69
 4.3.4 Plan-view maps 69
 4.3.5 Accuracy 69
4.4 Conclusion 71
References 72

5 A data fusion approach for identifying lifestyle patterns in elderly care 81
Mohamed Eldib, Tongda Zhang, Francis Deboeverie, Wilfried Philips, and Hamid Aghajan
5.1 Abstract 81
5.2 Introduction 81
5.3 Multi-sensor environment projects 83
5.4 Sensor fusion approaches 84
 5.4.1 Data fusion level 84
 5.4.2 Feature fusion level 85
 5.4.3 Classifier fusion level 86
5.5 Overview of the service flat setup 88
 5.5.1 Low-resolution visual sensor 90
 5.5.2 PIR sensors 90
5 System overview

5.6 System overview
5.6.1 Feature selection
5.6.2 Lifestyle pattern extraction

5.7 Experiments

5.8 Conclusion and future challenges
Acknowledgements
References

6 Towards interoperable enhanced living environments

Susanna Spinsante, Ennio Gambi, Laura Montanini, Laura Raffaeli, Lambros Lambrinos, Virginie Felizardo, Nuno Pombo, and Nuno Garcia

6.1 Introduction

6.2 Smart homes, living environments, and the need for interoperability

6.3 Projects and frameworks overview
6.3.1 UniversAAL
6.3.2 DOMOINSTANT
6.3.3 AllJoyn
6.3.4 OneM2M
6.3.5 openHAB
6.3.6 Thread

6.4 Network and data interoperability
6.4.1 Java for intelligent network (Jini)
6.4.2 Universal plug and play
6.4.3 Home electronic system
6.4.4 Home audio/video interoperability
6.4.5 Medical standards, interoperability, and challenges

6.5 Conclusion
Acknowledgements
References

7 Reasoning systems for AAL

Gorka Azkune, David Ausín, and Diego López-de-Ipiña

7.1 Introduction

7.2 Activity monitoring
7.2.1 Vision-based activity monitoring
7.2.2 Sensor-based activity monitoring

7.3 Activity modelling and inference
7.3.1 Data-driven approaches
7.3.2 Knowledge-driven approaches
7.3.3 Hybrid approaches

7.4 Ontologies in AAL
7.4.1 Tools
7.4.2 Beyond OWL

7.5 Conclusions
Acknowledgement
References
8 Person–environment interaction

Praminda Caleb-Solly

8.1 Introduction 143
8.2 Interaction within an ambient assisted living environment 144
 8.2.1 Interaction modalities 146
 8.2.2 Spatial relevance of person–environment interaction 148
 8.2.3 Interaction initiative 148
8.3 Interaction models 149
8.4 Understanding the ageing process and considerations for interaction 150
 8.4.1 Vision 151
 8.4.2 Hearing 151
 8.4.3 Touch 152
 8.4.4 Cognition 152
 8.4.5 Physical ability 152
 8.4.6 Summary 153
8.5 Person–environment interaction design guidelines 153
 8.5.1 Understanding context of use 153
 8.5.2 Usability guidelines and principles 154
 8.5.3 User experience 155
 8.5.4 Privacy, trust and data security 156
 8.5.5 Evaluating effectiveness of person–environment interaction in AAL systems 157
8.6 Conclusion 158
References 159

9 Data analytics for enabling connected health

Sanjeev Naguleswaran, Kylie Wall, and Karen Grimmer

9.1 Introduction 163
 9.1.1 Current situation 165
 9.1.2 The future of healthcare delivery 165
9.2 Data analytics 166
 9.2.1 Machine learning 167
9.3 Active daily living 167
 9.3.1 Algorithm 168
 9.3.2 Feature engineering 168
 9.3.3 Application of the ensemble method 170
9.4 Results and analysis 172
9.5 Conclusion 173
References 173
Part 2 Applications for Active and Assisted Living

10 Human gait analysis for frailty detection – quantitative techniques and procedures

Jesús Fontecha, Iván González, Ramón Hervás and José Bravo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>10.2 An overview of frailty syndrome: the importance of functional markers</td>
<td>181</td>
</tr>
<tr>
<td>10.3 Gait analysis procedure</td>
<td>183</td>
</tr>
<tr>
<td>10.3.1 Data acquisition: sources and fundamentals</td>
<td>183</td>
</tr>
<tr>
<td>10.3.2 Data segmentation and filtering</td>
<td>187</td>
</tr>
<tr>
<td>10.3.3 Data analysis: parameter estimation and identification of gait patterns</td>
<td>189</td>
</tr>
<tr>
<td>10.4 Overview of gait analysis systems and mechanisms</td>
<td>190</td>
</tr>
<tr>
<td>10.4.1 Specific purpose devices: sensors and tiny mechanisms</td>
<td>190</td>
</tr>
<tr>
<td>10.4.2 General purpose devices: smart and mobile devices</td>
<td>191</td>
</tr>
<tr>
<td>10.5 Gait analysis as part of a comprehensive study of frailty: experimental applications and case studies</td>
<td>192</td>
</tr>
<tr>
<td>10.5.1 Frailty detection and diagnosis system by using accelerometer-enabled smartphones and clinical information</td>
<td>192</td>
</tr>
<tr>
<td>10.5.2 Gait monitoring system based on wireless sensorised insoles</td>
<td>194</td>
</tr>
<tr>
<td>10.5.3 Computer vision system based on a structured light sensor</td>
<td>197</td>
</tr>
<tr>
<td>10.6 Conclusions</td>
<td>198</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>200</td>
</tr>
<tr>
<td>References</td>
<td>200</td>
</tr>
</tbody>
</table>

11 Fall prevention and detection

Baldewijns G., Debard G., Van Den Broeck B., Mertens M., Karsmakers P., Croonenborghs T., and Vanrumste B.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>203</td>
</tr>
<tr>
<td>11.2 Fall risk estimation</td>
<td>203</td>
</tr>
<tr>
<td>11.2.1 Using gait parameters to automatically assess the fall risk of a person</td>
<td>204</td>
</tr>
<tr>
<td>11.2.2 Sensors which measure fall risk-related parameters</td>
<td>204</td>
</tr>
<tr>
<td>11.2.3 Closing the loop</td>
<td>210</td>
</tr>
<tr>
<td>11.3 Fall detection</td>
<td>214</td>
</tr>
<tr>
<td>11.3.1 Accelerometer-based fall detection systems</td>
<td>214</td>
</tr>
<tr>
<td>11.3.2 Radar-based fall detection</td>
<td>215</td>
</tr>
<tr>
<td>11.3.3 Video-based fall detection</td>
<td>215</td>
</tr>
<tr>
<td>11.3.4 Kinect-based fall detection</td>
<td>217</td>
</tr>
<tr>
<td>11.4 Conclusion</td>
<td>218</td>
</tr>
<tr>
<td>References</td>
<td>218</td>
</tr>
</tbody>
</table>
12 Supporting Activities of Daily Living 225

Colin Shewell, Chris Nugent, Mark Donnelly, and Haiying Wang

12.1 Introduction 225

12.2 What is an activity of daily living 225

12.3 Leveraging smart environments to support ADLs 227

12.4 Technology as an enabler 228

12.4.1 Emerging trends in sensor types 229

12.5 The role of ambient intelligence in making environments ‘smart’ 230

12.5.1 Data-driven approaches 230

12.5.2 Knowledge-driven approaches for modelling ADLs 231

12.5.3 Context-driven 232

12.6 Behaviour analysis 234

12.7 Challenges for realising truly smart homes 235

12.7.1 Interleaved Activities 235

12.7.2 Multiple occupancy 235

12.8 Conclusion 236

References 236

13 Outdoor mobility assistance–technologies helping on the way 241

René Hempel, Christoph Stahl, Birgit Stockinger, Ferdinand Kemeth, and Thorsten Vaupel

13.1 Introduction 241

13.1.1 Scenario 241

13.1.2 Current challenges 242

13.2 Towards seamless mobility 243

13.2.1 Localisation and positioning 243

13.2.2 Environment model and routing 246

13.2.3 Human–computer interaction 249

13.3 Products 250

13.3.1 Pedestrian navigation 251

13.3.2 Wearable GPS tracker 251

13.3.3 Mobility aids 252

13.3.4 Solutions for blind and visually impaired people 253

13.4 Research activities 254

13.5 Summary 256

References 257

14 Location and orientation technologies based on Wi-Fi systems for people with disabilities in indoor environment 261

Javier Coret Gorgonio, Javier Pérez Bou, and Francisco Alcantud Marín

14.1 Introduction 261

14.2 Assistive technology 263

14.2.1 The activity 264
14.2.2 The human factor 266
14.2.3 The context 267
14.2.4 The technology 268

14.3 Indoor location system 269
 14.3.1 Content (maps of buildings, signs, and identification of spaces) 269
 14.3.2 Mobile devices 270
 14.3.3 Location and navigation algorithms based on wireless technologies 270
 14.3.4 Wireless networks inside buildings 272
 14.3.5 Indoor location for people with disabilities 273

14.4 Conclusions and future lines 275
References 275

15 Enabling health, well-being and engagement in life through ambient-assisted living technologies – an occupational therapist’s lens 281
Debra Young

15.1 Common societal drivers 281
 15.1.1 Ageing population 281
 15.1.2 Desire to age in place 282
 15.1.3 Housing and community 283

15.2 Role of occupational therapy 283
 15.2.1 Person–Environment–Occupation Model 283
 15.2.2 Distinct value of occupational therapy 285

15.3 Universal design 285
 15.3.1 Equitable use 285
 15.3.2 Flexibility of use 286
 15.3.3 Simple and intuitive use 286
 15.3.4 Perceptible information 286
 15.3.5 Tolerance for error 286
 15.3.6 Low physical effort 286
 15.3.7 Size and space for approach and use 287

15.4 AAL: enabling health, well-being and engagement in life 287
 15.4.1 Well-being 288
 15.4.2 Health 294
 15.4.3 Social interaction 299
 15.4.4 Engagement in life 300

15.5 Concluding statement 305
References 305

16 Tablet-based clinical decision support system for hospitalised older adults 311
Mirza Mansoor Baig, Hamid GholamHosseini, and Martin J. Connolly

16.1 Introduction 311
16.2 Need for a decision support and monitoring system 312
16.3 Background and literature review 313
 16.3.1 Clinical decision support for inpatient care 313
 16.3.2 Mobile-based clinical decision support for assistive care for older adults 313
16.4 Current issues and challenges in hospital care 315
 16.4.1 Data processing and analysis 316
 16.4.2 ICT and infrastructure 317
16.5 Vital signs interpretation 319
 16.5.1 Individualised monitoring 319
 16.5.2 Weighted parameters 320
 16.5.3 Multilayer diagnosis 320
 16.5.4 Physical signs detection using multiple vital signs 321
16.6 Results and validation 322
 16.6.1 Real-time testing of physical signs detection model 322
16.7 Discussion 324
16.8 Conclusion 325
16.9 Conflict of interest statement 326
References 326

Part 3 Associated Issues and Case Studies

17 Smart, age-friendly cities and communities: the emergence of socio-technological solutions in the Central and Eastern Europe 335
 Andrzej Klimczuk and Łukasz Tomczyk

17.1 Introduction 335
17.2 The smart cities and communities in the context of the population ageing: An overview of the concept 336
17.3 The smart and age-friendly cities and communities from the perspective of the oldest residents 340
17.4 Shaping of smart and age-friendly cities and communities on the example of the CEE 344
 17.4.1 The smart and age-friendly cities and communities in connection with the active ageing index and European welfare systems 345
 17.4.2 Outdoor spaces, buildings and housing 346
 17.4.3 Social participation, civic participation and employment 349
 17.4.4 Transportation 351
 17.4.5 Communication and information 351
 17.4.6 Respect, social inclusion, community services, and health services 352
17.5 Conclusion 353
References 354
18 Towards accessible ambient-assisted living environments

Constantine Stephanidis

18.1 Introduction 361
18.2 An accessible AAL environment scenario 363
18.3 Human-centered design of accessible AAL environments 365
18.4 User and interaction models in AAL 367
18.5 Accessibility solutions 369
 18.5.1 Visual layout adaptations 370
 18.5.2 Voice interaction 371
 18.5.3 Scanning 372
 18.5.4 Touch 373
 18.5.5 Haptics 373
 18.5.6 Gestures 374
 18.5.7 Eye-tracking 375
 18.5.8 Augmented reality 376
 18.5.9 Multimodal interaction in AAL 377
18.6 AAL Architectures 378
18.7 Conclusions and future work 380
Acknowledgments 381
References 381

19 Privacy and ethical issues

Francisco Florez-Revuelta, José Ramón Padilla-López, John Dinsmore, and Barbara Pierscionek

19.1 Introduction 389
19.2 Privacy, ethical and legal issues 390
 19.2.1 Ethics in healthcare and technology 390
 19.2.2 Ethical principles 391
19.3 Privacy-by-design and privacy-enhancing technologies 392
19.4 Users’ perception of privacy 394
 19.4.1 Users’ views in the BREATHE project 396
19.5 Example of application—protection of visual privacy 397
 19.5.1 Privacy-by-context 398
 19.5.2 Visual privacy 399
 19.5.3 Survey about privacy filters 401
 19.5.4 Application in the BREATHE project 402
19.6 Discussion 405
References 406

20 Human-centred design with older adults: examples and recommendations for research, ideation and testing

Ana Correia de Barros and Ana Vasconcelos

20.1 Introduction 409
20.2 Practicalities 412
21 Design and implementation of a smart home technological platform for the delivery of AAL services: from requirements to field experience

Susanna Spinsante, Ennio Gambi, Adelmo De Santis, Laura Montanini, Giovanni Pelliccioni, Laura Raffaeli, and Giorgio Rascioni

21.1 Introduction
21.2 Background
21.3 The TRASPARENTE platform
21.4 Motivations for design solutions
 21.4.1 Issues in real-world implementation
 21.4.2 Integration of different components in TRASPARENTE
21.5 Experimental results
 21.5.1 Proof of concept
 21.5.2 Data management
 21.5.3 Data analysis
 21.5.4 User interfaces
 21.5.5 Conclusive tests
21.6 Discussion and open issues
21.7 Conclusion
References

22 Technologies and applications for active and assisted living – What’s next?

Francisco Florez-Revuelta and Alexandros Andre Chaaraoui

22.1 Foreseeing the future of AAL
22.2 What have we reached so far and what is next?
22.3 Conclusion
References

Index