Contents

Preface					
Pa	Part I Analogue control circuits				
1		PWM-based sliding mode control schemes for DC/DC power converters			
		Introduction	3		
	1.2	Basic sliding mode control theory	4		
	1.3	PWM-based SM control	6		
	1.4	PWM-based SM voltage control	7		
	1.5	PWM-based SM current control	15		
	1.6	Practical implementation and design issues	19		
	1.7	Conclusions	24		
	Refe	prences	24		
2	Synthetic-ripple hysteretic controllers for DC/DC converters				
	2.1	Hysteretic controllers for DC/DC converters	28		
	2.2	Building blocks and non-idealities	30		
		2.2.1 Converter	30		
		2.2.2 Carrier generation circuit	32		
		2.2.3 Hysteretic controller	33		
		2.2.4 Voltage feedback	35		
	2.3	Synthetic carrier generation circuit	40		
		2.3.1 Passive filtering technique	41		
		2.3.2 Active filtering technique	43		
	2.4	Load current feedforward	46		
	2.5	Linear model development	48		
		2.5.1 Modelling an SRG	48		
		2.5.2 Modelling a hysteretic controller	49		
	2.6	Conclusions	50		
	Refe	prences	50		
3	One	-cycle controlled power inverters	53		
	3.1	Introduction	53		
	3.2	OCC: operating principle and applications overview	55		
	3.3	OCC inverters for PV applications	59		
		3.3.1 OCC for single-phase PV inverters	60		

		3.3.2 OCC for three-phase PV inverters	66			
	3.4	OCC stability analysis by means of <i>Poincaré</i> maps	69			
	3.5	Conclusions	73			
	Refe	erences	73			
Pa	art II	Digital control circuits	77			
4	Dig	ital PWM control of high-frequency DC-DC switched-mode				
		ver converters	79			
	4.1	8	80			
		4.1.1 Timing diagram and controller operation	82			
		4.1.2 Loop delays	83			
	4.2	Dynamic modeling and system-level compensator design	84			
		4.2.1 Loop small-signal modeling	85			
		4.2.2 Compensator design and discretization	85			
	4.3	Quantization effects and limit cycling	87			
		4.3.1 A/D quantization	88			
		4.3.2 Modulation quantization	88			
		4.3.3 No-limit-cycling design criteria	88			
	4.4	I I I I I I I I I I I I I I I I I I I	91			
		4.4.1 Analog-to-digital converter	92			
		4.4.2 Digital compensator	94			
	4.5	4.4.3 Digital MPM	96			
	4.5		99			
	Refe	erences	99			
5	8 2					
		charge lamps	103			
	5.1		103			
		5.1.1 HID lamps	103			
		5.1.2 HID lamps operating requirements	105			
		5.1.3 HID lamps modelling	107			
	5.2	1	109			
		5.2.1 AC-operated electronic ballasts	109			
	5.0	5.2.2 DC-operated electronic ballasts	111			
	5.3	Digital control applied to electronic ballasts	111			
		5.3.1 General control strategy applied to HID lamps	111			
		5.3.2 PFC converter	112			
		5.3.3 DC-DC converter	112			
		5.3.4 Low-frequency inverter	113			
		5.3.5 Igniter	113			
	5 4	5.3.6 Protections	114			
	5.4	1	114			
		5.4.1 HID lamp ballast	114			
		5.4.2 Microcontroller PIC16F684	115			
		5.4.3 Control strategy	116			

0	
Contents	V11
contento	

		5.4.4	Lamp starting	116
		5.4.5	Warm-up process	117
		5.4.6	* *	118
		5.4.7	Protections	119
		5.4.8	Experimental results	119
	5.5	Summ	lary	122
	Refe	erences		122
6	FPC	GA-bas	ed controllers for direct sliding mode control of	
	PW		st rectifiers	125
	6.1		uction	125
	6.2		g mode control: theory and application for power	
			rters control	126
	6.3		t sliding mode control for single-phase PWM rectifier	127
		6.3.1	Single-phase PWM rectifier model	127
		6.3.2	Steady-state operation limits	129
		6.3.3		130
	6.4	6.3.4	FPGA-based controller	132
	6.4	6.4.1	t sliding mode control for three-phase PWM rectifier	136 136
		6.4.2	Three-phase PWM rectifier model Steady-state operation limits	130
		6.4.3	Synthesis of the direct sliding mode control	138
		6.4.4	FPGA-based controller	143
	6.5			148
		erences		140
7	DSF	ontro	ollers for three-phase unity-power-factor rectifiers	151
,	7.1		uction	151
	7.2		boards for power converters control	151
	7.3		ogies for three-phase unity-power-factor rectifiers	152
		7.3.1	Three-phase rectifiers: VSR and CSR	154
		7.3.2	Novel topologies: Y- or Δ -switch rectifier and VIENNA	
			rectifier	157
	7.4	Phase	-locked loops algorithms	159
		7.4.1	Implementation of PLL algorithms with fixed sampling	1.00
		7 4 2	time in three-phase systems	160
		7.4.2	Implementation of single-phase PLLs with fixed sampling time	162
		7.4.3	Implementation of PLL algorithms with varying sampling	
			time in three-phase systems	167
		7.4.4	Implementation of single-phase PLLs with varying	
			sampling time	168
		7.4.5	Comments	170
	7.5	Contro	ol algorithms for UPF rectifiers	172
		7.5.1	dq frame-based control	172
		7.5.2	pq theory-based control	175

		7.5.3 Predictive control	178			
	7.6	Conclusions	184			
	Refe	rences	185			
8	DSP	controllers for grid-connected three-phase voltage-sourced				
		rters	189			
	8.1	Introduction	189			
	8.2	Modeling and control structures of grid-connected				
		three-phase voltage-sourced inverters (VSIs)	191			
		8.2.1 Modeling in an orthogonal stationary reference				
		frame (StatRF)	191			
		8.2.2 Modeling in an orthogonal synchronous reference				
		frame (SRF)	199			
		8.2.3 Control of a grid-connected PV inverter with LCL filter	205			
	8.3	DSP control of a grid-connected PV inverter with LCL filter				
		in the StatRF	211			
		8.3.1 Design and programming of the current loops in the StatRF	211			
		8.3.2 Design and programming of the voltage loop in the StatRF	218			
	8.4	DSP control of a grid-connected PV inverter with LCL filter				
		in the SRF	222			
		8.4.1 Design and programming of the current loops in the SRF	222			
		8.4.2 Design and programming of the voltage loop in the SRF	230			
	8.5	Experimental results	230			
	8.6	Conclusions	237 237			
	Acknowledgment					
	Refe	rences	238			
9		A-DSP controllers for DC-DC converters in renewable energy				
		ications	241			
	9.1	Introduction	241			
	9.2	FPGA and DSP-based multi-functional digital controller	241			
		9.2.1 Controller platform	241			
		9.2.2 DSP–FPGA synchronization	244			
		9.2.3 Explanation of function blocks in the FPGA device	246			
		9.2.4 Implementation of a touch panel	246			
	9.3	Development of new topologies and control schemes for DC-DC	• • •			
		converters	248			
		9.3.1 High step-up passive clamp circuits	248			
	0.4	9.3.2 Three-phase interleaved high step-up converters	254			
	9.4	Application of the new topologies for PV installations	263			
	9.5	Conclusions	264			
	кете	rences	265			
10	Mul	tilevel converters: topologies, modulation and control	267			
	10.1	Introduction	267			
	10.2	Multilevel converter topologies	268			

		10.2.1 Diode-clamped converter (DCC)	269			
		10.2.2 Flying capacitor (FC) converter	270			
		10.2.3 Cascaded H-bridge multilevel converter	272			
		10.2.4 Modular multilevel converter	274			
	10.3	Modulation techniques for multilevel converters	275			
		10.3.1 Low switching frequency modulation techniques	277			
		10.3.2 High switching frequency modulation techniques	278			
		10.3.3 MMC: circulating current control and capacitor voltage				
		balance	287			
		10.3.4 Common and differential circuits	287			
	10.4	Digital controller implementations for multilevel converters	293			
		10.4.1 Centralised digital controllers for converters with a				
		low number of levels	293			
		10.4.2 Distributed digital controllers for converters with				
		large number of levels	295			
	10.5		297			
	Refe	rences	298			
Par	t III	New trends in control circuits for power electronics	307			
11	State-of-the-art intelligent gate drivers for IGBT power					
	modules – monitoring, control and management at the heart					
	of power converters					
	11.1		309 309			
		11.1.1 Power electronic systems, IGBTs and gate driver units	310			
		11.1.2 Sensing and control systems	313			
	11.2	Innovative gate driver and system architecture	316			
		11.2.1 System integration	316			
		11.2.2 High temperature operation	318			
	11.3	Integrated data acquisition methods	319			
		11.3.1 Voltage measurement	321			
		11.3.2 Current measurement	322			
		11.3.3 Temperature measurement	325			
	11.4	Intelligent control	326			
		11.4.1 Condition monitoring	326			
		11.4.2 Control of switching characteristics	327			
		11.4.3 Series connection	329			
		11.4.4 Parallel connection	331			
	11.5	Summary	333			
		nowledgements	333			
	Refe	rences	333			
12	Cont	rol of integrated switched capacitor power converters	337			
	12.1	Introduction	337			
	12.2	Charge pump design considerations	338			

	12.3	Control	schemes	341
		12.3.1	Two-stage regulation strategies	343
		12.3.2		346
		12.3.3	Pulse frequency modulation and pulse control schemes	349
			Interleaving multiphase regulation	352
	12.4	Conclus	sions	354
	Refe	rences		354
13			atural frame control schemes for three-phase unity	
			rectifiers	357
	13.1	Introdu		357
	13.2		l model of the power converter	358
			tional sliding mode control in three-phase converters	359
	13.4	-	led model of the power converter	360
			Decoupled model derivation	361
		13.4.2	J J I I	363
	13.5	0	mode control scheme based on estimators	363
			Discrete decoupled model	364
			KF algorithm	365
			Practical considerations: selection of Q and R matrices	365
	10.6		Practical considerations: computational load reduction	366
	13.6	U	mode control of a UPFR	366
			Inner control loop	367
	12 7		Outer control loop	367
	13.7		mode control operating at fixed switching frequency	369
			Variable hysteresis band calculation	369
		13.7.2	8 8	371
	120	13.7.3 E		373
	13.8	-	nental results	375
	13.9 Defe	Summa rences	гу	375 378
	Refe	rences		5/8
14			SP for control and communication in AC microgrids	381
		Introdu		381
	14.2		in AC microgrids	382
			Microgrid architecture	382
			Power converters in AC microgrids	383
	14.2		Microgrid scenarios	385
	14.3		of grid-forming power converters	386
		14.3.1	Primary control	386
		14.3.2	Secondary control	388
	144	14.3.3	Tertiary control	390
	14.4		inication in AC microgrids	391
		14.4.1 14.4.2	Communication protocols Example of a low-scale laboratory microgrid	391 392
		14.4.2	Example of a low-scale laboratory inicrogrid	392

	14.5	Dual-co	ore DSP for control and communication	394
		14.5.1	Control and communication in DSP technology	394
		14.5.2	Description of the dual-core system architecture	395
		14.5.3	Control functions implemented in the C28 core	397
		14.5.4	Communication procedures implemented in the M3 core	398
		14.5.5	Extension to other control and communication schemes	
			in AC microgrids	400
	14.6	Experir	mental tests in the low-scale laboratory microgrid	401
		14.6.1	Performance evaluation of the primary control	402
		14.6.2	Performance evaluation of the secondary control	404
		14.6.3	Effects of packet loss in the communication network	406
	14.7	Conclu	sions	407
	Refe	rences		408
15		-	utational intelligence for designing power electronics	411
	converters			
		Introdu		411
	15.2		ation of fitness function	413
		15.2.1	Type-one fitness function	413
			Type-two fitness function	414
			Fitness function for the PCS	414
			Fitness function for FN	416
	15.3	1		417
	15.4	15.4 Description of ACO		420
			Data structure	421
			Procedures	421
	15.5		examples and implementation issues	423
		15.5.1	8 3	423
			Design using GA	424
		15.5.3	8 8	427
	15.6			427
	Refe	rences		429

Index

431