Contents

Preface		v	
Li	ist of	figures	xiv
Li	List of tables		
C	Contributors		xxvii
Pa	rt I	Modelling	
1	Tele	grapher's equations for field-to-transmission line interaction	3
	1.1	Transmission line approximation	3
	1.2	Single-wire line above a perfectly conducting ground	5
		1.2.1 Taylor, Satterwhite and Harrison model	6
		1.2.2 Agrawal, Price and Gurbaxani model	10
		1.2.3 Rachidi model	12
	1.3	Contribution of the different electromagnetic field components	13
	1.4	Inclusion of losses	13
	1.5	Case of multi-conductor line	15
	1.6	Time-domain representation of the coupling equations	17
	1.7	Solutions with particular reference to time-domain numerical	
		solutions	18
	1.8	Application of theory to the case of lightning-induced voltages on	
		distribution overhead lines	22
		1.8.1 The LIOV code	22
		1.8.2 The LIOV-EMTP-RV code	23
		1.8.3 LEMP response of electrical distribution systems	29
	1.9	Summary and concluding remarks	39
		nowledgements	40
	Bibl	liography	40
2	An	affine arithmetic-based methodology for uncertain power flow	
		optimal power flow analyses	45
		Introduction	45
	2.2	Overview of existing approaches	46
		2.2.1 Sampling methods	46
		2.2.2 Analytical methods	47
		2.2.3 Approximate methods	48
		2.2.4 Non-probabilistic methods	49
		2.2.5 AA-based methods	50

viii Advances in power system modelling, control and stability analysis

2.3	Mathematical background	51
	2.3.1 PF analysis	51
	2.3.2 OPF analysis	52
2.4	Self-validated computing	54
	2.4.1 Interval arithmetic	54
	2.4.2 Affine arithmetic	56
2.5	AA-based PF and OPF analyses	58
	2.5.1 Theoretical framework	59
	2.5.2 Applications	64
2.6	Numerical results	65
	2.6.1 PF analysis	66
	2.6.2 Reactive power dispatch	68
2.7	Computational requirements	69
2.8	Conclusions	71
Bibl	iography	73

3	DF	F-based synchrophasor estimation processes for Phasor	
	Mea	asurement Units applications: algorithms definition and	
	per	formance analysis	77
	3.1	Literature review	78
	3.2	Definitions	79
		3.2.1 Signal model	79
		3.2.2 Phasor	81
		3.2.3 Synchrophasor	81
		3.2.4 Frequency and rate of change of frequency	83
		3.2.5 Phasor measurement unit	84
	3.3	The discrete Fourier transform	86
		3.3.1 From the Fourier transform to the DFT	86
		3.3.2 DFT interpretation and relevant properties	87
		3.3.3 DFT effects	89
		3.3.4 DFT parameters	95
		3.3.5 DFT calculation in real time	98
	3.4	DFT-based SE algorithms	102
		3.4.1 The Interpolated-DFT technique	103
		3.4.2 The iterative-Interpolated DFT technique	110
	3.5	Performance analysis of SE algorithm	112
		3.5.1 The IEEE Std. C37.118	112
		3.5.2 Performance assessment of the i-IpDFT SE algorithm	121
	3.6	Conclusions	126
	Bib	liography	126
4	Ма	delling power systems with stochastic processes	131
4	IVIO	uennig dowel systems with stochastic diocesses	1.31

wideling power systems with stochastic processes	
4.1 Literature review	131
4.2 Outlines on SDEs	133

Contents	ix

	4.3	Design of SDE-based models	136
		4.3.1 Method based on the solution of the stationary Fokker-	
		Planck equation	136
		4.3.2 Examples	139
		4.3.3 Method based on translation processes	143
		4.3.4 Application to wind speed modelling	144
	4.4	Modelling power systems as SDAEs	145
		4.4.1 Modelling stochastic perturbations in power systems	147
		4.4.2 Examples	149
	4.5	Time-domain integration of SDAEs	152
		4.5.1 IEEE 145-bus 50-machine system	155
	4.6	Conclusions	159
	Bibl	iography	159
Pa	rt II	Control	
5	Opt	imization methods for preventive/corrective control in	
		ismission systems	163
	5.1	Formulation of a time-continuous dynamic optimization	
		problem for corrective control	163
	5.2	Formulation of a time-discrete static optimization problem	
		for corrective control	166
	5.3	Application to power system DAEs	169
		5.3.1 Control variables	173
		5.3.2 Control effort minimization	173
		5.3.3 Kinetic energy cost function	174
		5.3.4 Voltage penalty functions	175
		5.3.5 Distance relays penalty function	176
	5.4	Application of the proposed methodology for the corrective control	
		of a realistically sized power system (test results)	178
	5.5	Application to preventive control problems	183
	Bibl	iography	186
6	Stat	ic and recursive PMU-based state estimation processes	
-		transmission and distribution power grids	189
	6.1	State estimation measurement and process model	190
		6.1.1 Measurement model	191
		6.1.2 Network observability	201
		6.1.3 Process model	202
	6.2	Static state estimation: the weighted least squares	203
		6.2.1 Linear weighted least squares state estimator	204
		č 1	

	6.2.2 Non-linear weighted least squares	205
6.3	Recursive state estimation: the Kalman filter	206
	6.3.1 Discrete Kalman filter	206
	6.3.2 Extended Kalman filter	210

x	Adv	ances in power system modelling, control and stability analysis	
		6.3.3 Kalman Filter sensitivity with respect to the measurement	
		and process noise covariance matrices	211
		6.3.4 Assessment of the process noise covariance matrix	212
	6.4	Assessment of the measurement noise covariance matrix	212
	6.5	Data conditioning and bad data processing in PMU-based state	
		estimators	219
		Kalman filter vs. weighted least squares	222
	6.7	Numerical validation and performance assessment of the state	
		estimation	223
		6.7.1 Linear state estimation case studies	223
		6.7.2 Non-linear SE case studies	232
		Kalman filter process model validation	234
		Numerical validation of Theorem 6.1	235
	Bibl	liography	236
7	Rea	I-time applications for electric power generation	
,		voltage control	241
		Introduction	241
	7.2	Outlines of real-time system concepts	242
		7.2.1 Real-time operating systems	244
		7.2.2 Real-time communications	250
	7.3	Voltage control	254
		7.3.1 Excitation control systems	256
		7.3.2 Secondary voltage control	259
		7.3.3 Voltage control with distributed generation	265
	7.4	Conclusions	270
	Bibl	liography	270
8	Opt	imal control processes in active distribution networks	275
	8.1	Typical architecture of ADN grid controllers	276
		8.1.1 Control architecture	276
		8.1.2 Controller's actions	278
	8.2	Classic computation of sensitivity coefficients in power networks	280
	8.3	Efficient computation of sensitivity coefficients of bus	
		voltages and line currents in unbalanced radial electrical	
		distribution networks	282
		8.3.1 Voltage sensitivity coefficients	282
		8.3.2 Current sensitivity coefficients	285
		8.3.3 Sensitivity coefficients with respect to transformer's ULTC	286
	8.4		287
		8.4.1 Distribution network case studies	287
		8.4.2 Numerical validation	289
	0.5	8.4.3 Voltage control and lines congestion management examples	295
	8.5	Conclusions	308
	Bibl	liography	308

Pai	rt III	Stability Analysis	
9	Time	e-domain simulation for transient stability analysis	313
		Introduction	313
	9.2	Time-domain simulations and transient stability	315
	9.3	Transient stability and high-performance computing	321
	9.4	A new class of algorithms: from step-by-step solutions to	
		parallel-in-time computations	324
	9.5	Performances in parallel-in-time computations	332
	9.6	Conclusions	335
	Bib	liography	335
10	Volta	ge security in modern power systems	339
	10.1	Introduction	339
	10.2	The power flow problem in rectangular coordinated	344
		10.2.1 The power flow with SVC constraints	345
	10.3	The OPF with SVC constraints	349
		10.3.1 The maximum loadability with SVC constraints	350
		10.3.2 Minimisation of the squared deviation of the bus voltage	
		magnitude from a reference value	351
		10.3.3 Constrained maximisation of the loadability with SVC	355
	10.4	Solution of the optimisation problem	356
		10.4.1 Primal-dual interior point method	356
		10.4.2 Reduction of the linear system	359
	10.5	Numerical results	360
		10.5.1 The New England 39 buses network case	361
		10.5.2 The Italian case	363
		Conclusions	367
	Bibli	ography	367
11		ll-signal stability and time-domain analysis of delayed power	
	syste		371
	11.1	Introduction	371
		11.1.1 Time-domain methods	372
		11.1.2 Frequency-domain methods	372
	11.2	A general model for power systems with time delays	373
	11.0	11.2.1 Steady-state DDAE	374
	11.3	Numerical techniques for DDAEs	376
		11.3.1 Padé approximants	376
		11.3.2 Numerical integration of DDAEs	378
		11.3.3 Methods to approximate the characteristic roots	200
		of DDAEs	380
		11.3.4 Discretization of the TIO	382
	11 /	11.3.5 LMS approximation	384
	11.4	Impact of delays on power system control	385

xii	Adv	ances in power system modelling, control and stability analysis	
	11.5	Case studies	388
	1110	11.5.1 IEEE 14-bus system	388
		11.5.2 All-island 1479-bus Irish system	394
	Bibli	ography	400
12	Shoo	oting-based stability analysis of power system oscillations	405
		Introduction	406
	12.2	Mathematical background	408
		12.2.1 The time-domain shooting method	408
		12.2.2 The state transition matrix for hybrid dynamical systems	410
		12.2.3 Bordering the Jacobian	413
	10.0	12.2.4 The probe-insertion technique	414
	12.3	Revisited PSM	417
		12.3.1 Outlines of standard PSMs	417 420
		12.3.2 From polar to rectangular coordinates12.3.3 On the unit multipliers of the PSM periodic orbits	420
		12.3.4 Bordering based on the COI	423
	124	Case studies	424
	12.1	12.4.1 IEEE 14-bus test system	424
		12.4.2 WSCC 9-bus test system	426
		12.4.3 A switching two-area PSM	427
	12.5	Conclusions	431
	Bibli	ography	431
Pa	rt IV	Appendices	
Ар	pend	ix A Outlines of stochastic calculus	437
		Stationary Markov processes	437
		Regression theorem	438
		Change of variables in stochastic calculus: the Itô formula	438
		Memoryless transformations: translation Processes	439
		Fokker–Planck equation	440
	Bibli	ography	440
Ap		ix B Data of lines, loads and distributed energy resources	441
		IEEE 34-bus distribution test feeder data	441
	B.2	IEEE 13-bus distribution test feeder data	442
	B.3	IEEE 39-bus transmission test system data	445
	Bibli	ography	446
Ар	pend	ix C Proofs and tools for DDAEs	447
-	C.1	Determination of A_0 , A_1 and A_2	447
	C.2	Chebyshev's differentiation matrix	448
	C.3	Kronecker's product	448
	Bibli	ography	449

Contents xiii

Appendix D Numerical aspects of the probe-insertion technique	451
D.1 Parameters of the probe-insertion technique	451
D.2 Integration of (12.44)	451
Bibliography	452
Index	453