Contents

About the authors xi
Abbreviations and acronyms xiii
List of symbols used xv
Foreword xvii
Preface xix
Acknowledgements xxiii

1 Introduction 1
References 3

2 Review of electromagnetic theory 5
 2.1 Maxwell’s equations 5
 2.2 Boundary conditions 6
 2.3 Energy and power 7
 2.4 Reciprocity theorem 8
 2.4.1 Source-free region 8
 2.4.2 Infinite region or a region bounded by perfect conductors 9
 2.5 Vector and scalar potentials 9
 2.5.1 Electric vector potential 10
 2.6 The image principle 11
 2.7 The field equivalence principle 12
 2.8 Green’s functions 13
 2.8.1 Free-space Green’s function 13
 2.8.2 Dyadic Green’s function for the magnetic field of a magnetic current in a rectangular waveguide 14
References 15

3 History 17
 3.1 The early years 17
 3.2 The golden years 17
 3.3 Waveguide slot antennas 18
 3.4 The many shapes of slotted waveguide array antennas 18
References 23

4 The slot antenna 25
 4.1 An aperture in an infinite ground plane 25
 4.1.1 Problem formulation 25
 4.1.2 Far field 26
4.1.3 General field expressions 27
4.1.4 Radiated complex power 29
4.1.5 The aperture admittance 29

4.2 The rectangular slot antenna 30

4.3 Waveguide modes 33
4.3.1 Definitions 33
4.3.2 The rectangular waveguide 34
4.3.3 The TE_{10} mode case 36

4.4 The longitudinal slot in a waveguide wall 36
4.4.1 Preliminaries 36
4.4.2 The longitudinal rectangular slot 38
4.4.3 Rectangular waveguide and TE_{10} mode scattering 39
4.4.4 The equivalent slot conductance 40

4.5 Mutual coupling 43
4.5.1 Introduction 43
4.5.2 Mutual coupling calculations 44
4.5.3 Finite ground plane effects 55

References 57

5 Slot models 59
5.1 Modelling principles 59
5.1.1 Using experimental data 59
5.1.2 Equivalent circuit approach 60
5.1.3 Electromagnetic models 62
5.1.4 Finite wall thickness 66

5.2 Integral equation solution 68
5.2.1 The internal field 68
5.2.2 The external field 70
5.2.3 Matrix elements 71

5.3 Longitudinal slot characteristics 72
5.3.1 Slot electric field distribution 72
5.3.2 Slot magnetic field distribution 76
5.3.3 Experimental verification 79
5.3.4 Weakly excited slots 82

5.4 Transverse slots 83
5.4.1 Introduction 83
5.4.2 Theoretical analysis 84
5.4.3 Results 86

References 88

6 The linear slotted waveguide array antenna 93
6.1 Introduction 93
6.1.1 Overview of design approaches 95
6.2 The accuracy of the slot array model 97
6.2.1 Slot model 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2 Network model</td>
<td>97</td>
</tr>
<tr>
<td>6.2.3 Ground plane</td>
<td>97</td>
</tr>
<tr>
<td>6.2.4 Mutual coupling</td>
<td>97</td>
</tr>
<tr>
<td>6.3 The Elliott design equations</td>
<td>99</td>
</tr>
<tr>
<td>6.3.1 The first design equation</td>
<td>99</td>
</tr>
<tr>
<td>6.3.2 The second design equation</td>
<td>101</td>
</tr>
<tr>
<td>6.3.3 The iterative design algorithm for standing wave arrays</td>
<td>102</td>
</tr>
<tr>
<td>6.4 Mutual coupling</td>
<td>104</td>
</tr>
<tr>
<td>6.4.1 Efficient computation of the external mutual coupling terms</td>
<td>104</td>
</tr>
<tr>
<td>6.4.2 The self-admittance</td>
<td>106</td>
</tr>
<tr>
<td>6.4.3 Internal TE\textsubscript{20} mode coupling</td>
<td>109</td>
</tr>
<tr>
<td>6.4.4 Full wave analysis</td>
<td>111</td>
</tr>
<tr>
<td>6.4.5 Mutual coupling compensation</td>
<td>111</td>
</tr>
<tr>
<td>6.5 Design example of a standing wave array</td>
<td>112</td>
</tr>
<tr>
<td>6.5.1 Slot data needed for the design algorithm</td>
<td>112</td>
</tr>
<tr>
<td>6.5.2 Design of a -30 dB sidelobe-level Dolph–Chebyshev array</td>
<td>113</td>
</tr>
<tr>
<td>6.6 Design of a travelling wave array</td>
<td>116</td>
</tr>
<tr>
<td>6.6.1 Design equations for travelling wave array</td>
<td>118</td>
</tr>
<tr>
<td>6.6.2 Design algorithm</td>
<td>118</td>
</tr>
<tr>
<td>6.6.3 Example of a 21-element travelling wave array</td>
<td>119</td>
</tr>
<tr>
<td>6.7 Array design using the concept of incremental conductance</td>
<td>126</td>
</tr>
<tr>
<td>6.8 Array design in terms of scattering parameters</td>
<td>128</td>
</tr>
<tr>
<td>6.9 Improvement to Elliott’s design procedure</td>
<td>130</td>
</tr>
<tr>
<td>References</td>
<td>132</td>
</tr>
</tbody>
</table>

7 Design of planar slotted waveguide array antennas	135
7.1 Introduction	135
7.2 Elliott’s design procedure for planar standing wave arrays	136
7.2.1 Design algorithm	139
7.2.2 Example of a 6×6 planar array	141
7.3 Design of large arrays using the infinite array mutual coupling model	145
7.3.1 Infinite array mutual coupling expression	146
7.4 Choice of total slot conductance in radiating waveguides and resistance in feed waveguides	149
7.5 Sub-array architectures	151
7.5.1 A planar array of 160×160 elements consisting of 10×10 element sub-arrays	151
7.5.2 A slot array with 8×8 radiating elements consisting of two sub-arrays	151
7.5.3 A slot array with four-element sub-arrays	152
7.6 Examples of planar slot array designs	156
7.6.1 Large array design using the infinite array model	156
7.6.2 An 8×8 slot array for radiometer application	160
7.7 Design of a travelling wave feed for a planar array 162
 7.7.1 Design procedure for a travelling wave feed in terms of scattering wave representation of a coupling slot 164
 7.7.2 Computed results 166
7.8 A review of other methods for analysis and design in the literature 168
7.9 The generalised scattering matrix model for analysis and design 169
References 172

8 Concepts and models for advanced designs 175
 8.1 Coupling slot models 175
 8.1.1 Centred-inclined coupling slot 176
 8.1.2 Shunt-series coupling slot 179
 8.1.3 Transverse/transverse coupling slot 181
 8.2 Edge wall slot 182
 8.3 Radiating compound broad wall slot 184
 8.4 Iris-excited longitudinal slot 186
 8.4.1 Elliott’s design procedure for iris-excited slotted waveguide arrays 189
 8.5 Slot arrays in ridge waveguides 190
 8.6 Slot arrays with a dielectric cover 191
 8.7 Higher-order mode coupling between centred-inclined coupling slots 193
 8.7.1 Theory for the higher-order mode coupling between centred-inclined coupling slots 195
 8.7.2 Procedure to incorporate the higher-order mode coupling in the design of centred-inclined coupling slots 196
 8.8 Higher-order mode coupling between a centred-inclined coupling slot and longitudinal radiating slots 197
 8.9 Finite ground plane effects 199
 8.10 MoM solution to the integral equations of a planar array and applications 201
 8.10.1 Formulation of the coupled integral equations 201
 8.10.2 MoM solution 203
 8.10.3 Improved design procedure using the MoM solution 204
 8.11 Global optimisations for improved designs 209
 8.11.1 GA optimisation of a travelling wave linear array 209
 8.11.2 GA optimisation of a planar standing wave array using the MoM analysis 211
 8.11.3 Equivalence between a slot with one basis function and a slot with many basis functions 213
 8.11.4 GA optimised results 215
References 217
9 Antenna systems and special requirements 221
 9.1 Phase scanned slotted waveguide arrays 221
 9.2 Frequency scanned slotted waveguide arrays 223
 9.2.1 Travelling wave linear array 225
 9.2.2 Phase reversal travelling array 226
 9.2.3 Resonant series feed array 230
 9.2.4 Centre-fed travelling array 231
 9.3 Dual polarised slotted waveguide arrays 232
 9.4 Multiple beam slotted waveguide arrays 237
 9.5 Conformal slotted waveguide arrays 239
 9.6 Monopulse slotted waveguide arrays 242
 9.7 Stripline slotted arrays 245
 9.7.1 Introduction 245
 9.7.2 Independent excitations 247
 9.8 Scattering from slotted waveguide arrays 249
 9.8.1 Introduction 249
 9.8.2 Scattering by a single slot in a planar ground plane 250
 9.8.3 Scattering from an array of slots 252
 9.8.4 The feeding network 255
 9.8.5 Numerical examples 256
 9.8.6 Spatial filters 256
 9.9 Second-order lobes 258
 9.9.1 Introduction 258
 9.9.2 Analysis 258
 9.9.3 Reducing the secondary lobes 259
 9.10 Omnidirectional slotted waveguide array antennas 266
 9.10.1 Slotted rectangular waveguide array 266
 9.10.2 Slotted circular waveguide array 266
 9.10.3 The pattern ripple problem 269
 9.11 On the bandwidth of slotted waveguide array antennas 272
 9.11.1 Introduction 272
 9.11.2 The slot itself 273
 9.11.3 The waveguide-fed longitudinal slot 273
 9.11.4 The linear resonant array antenna 275
 9.11.5 Overloading 277
 9.11.6 Mutual coupling 278
 9.11.7 The planar array and feeding arrangements 279
 9.11.8 Travelling wave arrays 281
 References 282

10 Slot arrays in special waveguide technologies 291
 10.1 Slot arrays in circular parallel plate waveguides 291
 10.1.1 Circularly polarised radial line slot antenna 291
 10.1.2 Slot coupling and the attenuation coefficient of the propagating wave 296