Contents

List	t of fi	gures		XV
List	t of ta	ables		xxiv
Pre	face			XXV
Acl	cknowledgements x:			
1	Introduction to FDTD			1
	1.1	The fin	ite-difference time-domain method basic equations	2
	1.2	Approx	simation of derivatives by finite differences	4
	1.3	FDTD	updating equations for three-dimensional problems	13
	1.4	FDTD	updating equations for two-dimensional problems	23
	1.5	FDTD	updating equations for one-dimensional problems	27
	1.6	Exercis	Ses	32
2	Nur	nerical	stability and dispersion	33
	2.1	Numer	ical stability	33
		2.1.1	Stability in time-domain algorithm	33
		2.1.2	CFL condition for the FDTD method	35
	2.2	Numer	ical dispersion	37
	2.3	Exercis	ses	41
3	Buil	ding ol	ojects in the Yee grid	43
	3.1	Definit	ion of objects	43
		3.1.1	Defining the problem space parameters	45
		3.1.2	Defining the objects in the problem space	48
	3.2	Materia	al approximations	50
	3.3	Subcell	averaging schemes for tangential and normal components	52

viii Contents	
---------------	--

	3.4	Defin	ing objects snapped to the Yee grid	55
		3.4.1	Defining zero-thickness PEC objects	57
	3.5	Creat	ion of the material grid	58
	3.6	Impro	oved eight-subcell averaging	66
	3.7	Exerc	vises	66
4	Act	ive an	d passive lumped elements	71
	4.1	FDTI	D updating equations for lumped elements	71
		4.1.1	Voltage source	72
		4.1.2	Hard voltage source	74
		4.1.3	Current source	75
		4.1.4	Resistor	76
		4.1.5	Capacitor	77
		4.1.6	Inductor	78
		4.1.7	Lumped elements distributed over a surface or within a volume	79
		4.1.8	Diode	81
		4.1.9	Summary	85
	4.2	Defin	ition, initialization, and simulation of lumped elements	86
		4.2.1	Definition of lumped elements	86
		4.2.2	Initialization of FDTD parameters and arrays	89
		4.2.3	Initialization of lumped element components	90
		4.2.4	Initialization of updating coefficients	97
		4.2.5	Sampling electric and magnetic fields, voltages, and currents	108
		4.2.6	Definition and initialization of output parameters	111
		4.2.7	Running an FDTD simulation: The time-marching loop	119
		4.2.8	Displaying FDTD simulation results	129
	4.3	Simu	lation examples	132
		4.3.1	A resistor excited by a sinusoidal voltage source	132
		4.3.2	A diode excited by a sinusoidal voltage source	135
		4.3.3	A capacitor excited by a unit-step voltage source	137
	4.4	Exerc	vises	141
5	Sou	rce w	aveforms and time to frequency	
	don	nain tı	ransformation	143
	5.1	Com	non source waveforms for FDTD simulations	143
		5.1.1	Sinusoidal waveform	144
		5.1.2	Gaussian waveform	145
		5.1.3	Normalized derivative of a Gaussian waveform	148
		5.1.4	Cosine-modulated Gaussian waveform	151

	5.2	5.2 Definition and initialization of source waveforms for FDTD simulations		151
	5.3	Trans	formation from time domain to frequency domain	155
	5.4	Simu	lation examples	158
		5.4.1 5.4.2	Recovering a time waveform from its Fourier transform An RLC circuit excited by a cosine-modulated	160
	5.5	Exerc	Gaussian waveform	162 167
6		arame		169
	6.1	Scatte	ering parameters	169
	6.2		rameter calculations	170
	6.3		lation examples	179
			Quarter-wave transformer	179
	6.4	Exerc		184
7	Per	fectly	matched layer absorbing boundary	185
	7.1	Theor	ry of PML	185
		7.1.1	Theory of PML at the vacuum-PML interface	185
		7.1.2	Theory of PML at the PML-PML interface	188
	7.2	PML	equations for three-dimensional problem space	191
	7.3	PML	loss functions	192
	7.4		D updating equations for PML and MATLAB [®] ementation	194
		-	PML updating equations – two-dimensional TE_z case	194
			PML updating equations – two-dimensional TM_z case	197
		7.4.3	MATLAB [®] implementation of the two-dimensional FDTD	
			method with PML	199
	7.5		lation examples	215
			Validation of PML performance	215
			Electric field distribution	220
	7.6	7.5.3 Exerc	Electric field distribution using DFT	225 227
				221
8	Adv	anced	I PML formulations	229
	8.1	Form	ulation of CPML	229
		8.1.1	PML in stretched coordinates	229
		8.1.2	Complex stretching variables in CFS-PML	230

Contents х

	8.1.3 The matching conditions at the PML–PML interface	231	
	8.1.4 Equations in the time domain	231	
	8.1.5 Discrete convolution	231	
	8.1.6 The recursive convolution method	232	
8.2	The CPML algorithm	234	
	8.2.1 Updating equations for CPML	235	
	8.2.2 Addition of auxiliary CPML terms at respective regions	236	
8.3	CPML parameter distribution	237	
8.4	1		
	FDTD method	238	
	8.4.1 Definition of CPML	239	
	8.4.2 Initialization of CPML	240	
	8.4.3 Application of CPML in the FDTD time-marching loop	246	
8.5		249	
	8.5.1 Microstrip low-pass filter	249	
	8.5.2 Microstrip branch line coupler	250	
	8.5.3 Characteristic impedance of a microstrip line	258	
8.6		264	
8.7	MATLAB [®] implementation of CPML in the two-dimension FDTD method	nal 267	
	8.7.1 Definition of CPML	268	
	8.7.2 Initialization of CPML	268	
	8.7.3 Application of CPML in the FDTD time-marching loop	269	
	8.7.4 Validation of CPML performance	271	
8.8	Auxiliary differential equation PML	273	
	8.8.1 Derivation of the ADE-PML formulation	273	
	8.8.2 MATLAB [®] implementation of the ADE-PML formulation	n 275	
8.9	Exercises	275	
Nea	ar-field to far-field transformation	279	
9.1	Implementation of the surface equivalence theorem	281	
	9.1.1 Surface equivalence theorem	281	
	9.1.2 Equivalent surface currents in FDTD simulation	282	
	9.1.3 Antenna on infinite ground plane	285	
9.2	Frequency domain near-field to far-field transformation	285	
	9.2.1 Time-domain to frequency-domain transformation	285	
	9.2.2 Vector potential approach	286	
	9.2.3 Polarization of radiation field	287	
	9.2.4 Radiation efficiency	289	

9

	9.3	MATLAB [®] implementation of near-field to far-field	200
		transformation	289
		9.3.1 Definition of NF–FF parameters9.3.2 Initialization of NF–FF parameters	289 290
		9.3.2 Initialization of NF–FF parameters9.3.3 NF–FF DFT during time-marching loop	290 293
		9.3.4 Postprocessing for far-field calculation	293
	9.4	Simulation examples	309
		9.4.1 Inverted-F antenna	309
		9.4.2 Strip-fed rectangular dielectric resonator antenna	315
	9.5	Exercises	320
10	Thir	-wire modeling	323
	10.1	Thin-wire formulation	323
	10.2	MATLAB [®] implementation of the thin-wire formulation	327
	10.3	Simulation examples	330
		10.3.1 Thin-wire dipole antenna	330
	10.4	An improved thin-wire model	335
	10.5	MATLAB [®] implementation of the improved	
		thin-wire formulation	339
	10.6	Simulation example	339
	10.7	Exercises	341
11	Scat	tered field formulation	345
	11.1	Scattered field basic equations	345
	11.2	The scattered field updating equations	346
	11.3	Expressions for the incident plane waves	350
	11.4	MATLAB [®] implementation of the scattered field formulation	354
		11.4.1 Definition of the incident plane wave	354
		11.4.2 Initialization of the incident fields	355
		11.4.3 Initialization of the updating coefficients	358
		11.4.4 Calculation of the scattered fields	359
	115	11.4.5 Postprocessing and simulation results	361
	11.5	Simulation examples	365
		11.5.1 Scattering from a dielectric sphere	365
		11.5.2 Scattering from a dielectric cube11.5.3 Reflection and transmission coefficients of a	370
		dielectric slab	376
	11.6	Exercises	380

12	Tota	I field/scattered field formulation	381
	12.1	Introduction	381
	12.2	MATLAB® implementation of the TF/SF formulation	386
		12.2.1 Definition and initialization of incident fields	386
		12.2.2 Updating incident fields	389
		12.2.3 Updating fields on both sides of the TF/SF boundary	390
	12.3	Simulation examples	393
		12.3.1 Fields in an empty problem space	394
		12.3.2 Scattering from a dielectric sphere	395
	12.4	Exercises	396
13	Disp	persive material modeling	397
	13.1	Modeling dispersive media using ADE technique	398
		13.1.1 Modeling Debye medium using ADE technique	398
		13.1.2 Modeling Lorentz medium using ADE technique	400
		13.1.3 Modeling Drude medium using ADE technique	401
	13.2	MATLAB [®] implementation of ADE algorithm for	
		Lorentz medium	402
		13.2.1 Definition of Lorentz material parameters	402
		13.2.2 Material grid construction for Lorentz objects	403
		13.2.3 Initialization of updating coefficients	406
		13.2.4 Field updates in time-marching loop	408
	13.3	Simulation examples	410
		13.3.1 Scattering from a dispersive sphere	410
	13.4	Exercises	412
14	Ana	lysis of periodic structures	413
	14.1	Periodic boundary conditions	413
	14.2	Constant horizontal wavenumber method	417
	14.3	Source excitation	422
	14.4	Reflection and transmission coefficients	424
		14.4.1 TE mode reflection and transmission coefficients	425
		14.4.2 TM mode reflection and transmission coefficients	427
		14.4.3 TEM mode reflection and transmission coefficients	428
	14.5	MATLAB [®] implementation of PBC FDTD algorithm	429
		14.5.1 Definition of a PBC simulation	429

		14.5.2	Initialization of PBC	431
		14.5.3	PBC updates in time-marching loop	434
	14.6	Simula	tion examples	442
		14.6.1	Reflection and transmission coefficients of a dielectric slab	442
		14.6.2	Reflection and transmission coefficients of a dipole FSS	443
		14.6.3	Reflection and transmission coefficients of a	
			Jarusalem-cross FSS	444
15	Non	unifor	m grid	447
	15.1	Introdu	action	447
	15.2	Transit	tion between fine and coarse grid subregions	447
	15.3	FDTD	updating equations for the nonuniform grids	452
	15.4	Active	and passive lumped elements	454
	15.5	Definit	ng objects snapped to the electric field grid	457
	15.6	MATL	AB [®] implementation of nonuniform grids	458
		15.6.1	Definition of subregions	459
		15.6.2	Initialization of subregions	460
		15.6.3	Initialization of updating coefficients	464
		15.6.4	Initialization of time step duration	466
	15.7	Simula	tion examples	466
		15.7.1	Microstrip patch antenna	466
		15.7.2	Three-pole microstrip low-pass filter	467
16	Gra	phics p	processing unit acceleration of finite-difference	
	time	e-doma	in method	471
	16.1	GPU p	programming using CUDA	472
		16.1.1	Host and device	472
		16.1.2	Thread hierarchy	474
		16.1.3	Memory hierarchy	476
		16.1.4	Performance optimization in CUDA	477
		16.1.5	Achieving parallelism	477
	16.2	CUDA	implementation of two-dimensional FDTD	477
		16.2.1	Coalesced global memory access	479
		16.2.2	Thread to cell mapping	481
		16.2.3		486
		16.2.4	Optimization of number of threads	487
	16.3	Perform	mance of two-dimensional FDTD on CUDA	487

APPENDIX A	One-dimensional FDTD code	491	
APPENDIX B	Convolutional perfectly-matched layer		
	regions and associated field updates for		
	a three-dimensional domain	495	
APPENDIX C	MATLAB [®] code for plotting far-field patterns	505	
APPENDIX D	MATLAB [®] GUI for project template	509	
References		511	
About the authors			
Index			