Contents

Preface xi

1 Applications of the characteristic mode theory to antenna design 1
 Ting-Yen Shih and Nader Behdad
 1.1 Introduction 1
 1.1.1 Background 1
 1.1.2 Characteristic mode theory 1
 1.2 Antenna design examples using the characteristic mode theory 6
 1.2.1 Circularly polarized antennas 7
 1.2.2 Wideband antennas 11
 1.2.3 Chassis-based MIMO antennas 12
 1.2.4 Bandwidth enhancement of platform-based antennas 15
 1.3 Summary 31
 References 32

2 Design of antennas mounted on complex platforms using
 the characteristic mode (CM) and characteristic basis (CB)
 function methods 35
 Raj Mittra, Ashwani Kumar, and Chao Li
 2.1 Introduction 35
 2.2 TCM approach to designing antennas for mobile phone platforms 37
 2.3 Characteristic basis method for locating antennas on
 mobile phone platforms 42
 2.4 Placement of multiple antennas on a complex platform 45
 2.4.1 TCM-based approach 45
 2.4.2 CB-based approach 50
 2.5 Illustrative examples 52
 2.5.1 Four microstrip patch antennas on an FR4 substrate 52
 2.5.2 Topside of a ship excited by monopoles 55
 2.5.3 Four PIFA antennas on FR4 substrate 57
 2.5.4 Chassis excited by six dipoles 58
 2.6 Conclusion 62
 Acknowledgment 63
 Appendix 64
 Appendix A1 Characteristic modes and bases 64
 A1.1 Generation of characteristic modes (CMs) 64
 A1.2 Generation of CBs 64
5.2.2 Classification of LWAs 131
5.3 Passive frequency-scanning LWA structures 132
 5.3.1 One-dimensional (1-D) Fabry–Pérot LWA 132
 5.3.2 Composite right/left-handed transmission line and LWA 135
 5.3.3 Half-width microstrip LWA 137
5.4 Reconfigurable LWAs 138
 5.4.1 1-D FP-reconfigurable LWAs 138
 5.4.2 Two-dimensional (2-D) FP-reconfigurable LWA 146
5.5 Experimental results 149
 5.5.1 CRLH-based reconfigurable LWA 152
 5.5.2 Reconfigurable half-width microstrip LWA 156
5.6 Conclusion 167
References 168

6 Reconfigurable high-gain antennas for wireless communications 171
Yingjie Jay Guo, Pei-Yuan Qin, and Raj Mittra

6.1 Introduction 171
6.2 Reconfigurable array antennas 172
6.3 Reconfigurable PRS antennas 182
 6.3.1 Frequency-reconfigurable PRS antenna 182
 6.3.2 Pattern-reconfigurable PRS antenna 183
 6.3.3 Polarization-reconfigurable PRS antenna 189
6.4 Conclusions 197
References 197

7 Microfluidically reconfigurable antennas 203
Gokhan Mumcu

7.1 Introduction 203
7.2 Fabrication and actuation techniques 205
7.3 Flexible and stretchable liquid metal antennas 210
7.4 Frequency-reconfigurable liquid metal antennas 213
7.5 Reconfigurable antennas using dielectric liquids 220
7.6 Beam-steerable liquid metal antennas 224
7.7 Reconfigurable antennas using microfluidically repositionable metallized plates 227
7.8 Concluding remarks 236
References 237

8 Flexible and wearable antennas 243
Muhammad M. Tahseen and Ahmed A. Kishk

8.1 Introduction 243
8.2 Wearable antennas for biomedical applications 246
8.3 AMC-based flexible wearable antennas 247
8.4 Inkjet-printed wearable antennas 249
8.5 Textile-based wearable antennas
8.5.1 Single- and multi-layer multi-Bowtie conformal antennas
8.5.2 Dielectric resonator antennas for wearable application
8.5.3 Wearable artistic antennas for WLAN-band

References

9 Wearable technology and mobile platform for wearable antennas for human health monitoring
Vijay K. Varadan, Pratyush Rai, Se Chang Oh, Prashanth Shyam Kumar, Mouli Ramasamy, and Robert E. Harbaugh

9.1 Introduction
9.2 Smart textile for health monitoring
9.3 Electrical signals from the brain and heart
9.4 Cardiovascular anatomy and electrophysiology
 9.4.1 The dipole theory for ECG
 9.4.2 Derivation of ECG from dipole vector
9.5 Monitoring and diagnosis: neurological signal measurements
9.6 Monitoring and diagnosis: cardiological signal measurements of diagnostic value
9.7 Monitoring systems
9.8 Neurological disorder monitoring by wearable wireless nano-bio-textile sensors
9.9 Cardiovascular health monitoring
 9.9.1 Hardware system
 9.9.2 ECG signal acquisition
9.10 Biofeedback system for therapeutics
9.11 Conclusion

References

10 Meta-atoms and artificially engineered materials for antenna applications
Ravi Kumar Arya, Shiyu Zhang, Shaileshchandra Pandey, Ashwani Kumar, Yiannis Vardaxoglou, William Whittow, and Raj Mittra

10.1 Introduction
10.2 Lens designs using MTMs
10.3 Lens design using RO
10.4 3D-Printing technique
10.5 Design of artificially engineered materials
 10.5.1 Designing higher-permittivity materials from low-permittivity COTS material: method-1
 10.5.2 Designing higher-permittivity materials from low-permittivity COTS material: method-2
10.5.3 Designing lower-permittivity materials from high-permittivity COTS material 360
10.5.4 Designing lower-permittivity materials from high-permittivity 3D-printing material 360
10.6 Different lens designs 362
10.6.1 PLA Lens design 362
10.6.2 DaD lens design 371
10.6.3 ABS lens design 377
10.6.4 Comparison of DaD and ABS lenses 381
10.7 Summary 384
10.8 Metal-only reflectarray antenna designs using metasurfaces 386
10.9 Performance enhancement of antenna and array antennas using metasurface superstrates 394
10.9.1 Example-1 394
10.9.2 Example-2 398
10.9.3 Summary 402
References 402

11 Microwave antennas based on metamaterials and metasurfaces 407
Wen Xuan Tang and Tie Jun Cui

11.1 GRIN MTM lens antennas 408
11.1.1 MTM flat lens antenna 408
11.1.2 MTM curved lens antennas 419
11.2 MTM antennas using transformation optics 425
11.2.1 MTM flattened reflectors 427
11.2.2 MTM flattened convex and hyperbolic lenses 431
11.2.3 MTM Luneburg lens with flattened focal surface 434
11.3 Metasurface antennas 436
11.3.1 Holographic metasurfaces for beam scanning 438
11.3.2 Spoof SPP radiations 438
11.3.3 Coding metasurfaces 439
References 440

12 Metamaterial-based zero-phase-shift-line loop antennas 445
Zhi Ning Chen, Xianming Qing, Jin Shi, and Yunjia Zeng

12.1 Introduction 445
12.2 State-of-the-art ZPSL loop antennas 446
12.3 Modeling of zero-phase-shift-line structure 447
12.3.1 Dispersion analysis of zero-phase-shift-line structure 447
12.3.2 Design guidelines 452
12.4 Design and applications 456
12.4.1 Electrically large zero-phase-shift-line loop antennas for UHF near-field RFID readers 456
12.4.2 Horizontally polarized omnidirectional antenna for WLAN access points 470
12.4.3 CP omnidirectional antenna for UHF far-field RFID readers 472
12.5 Summary 477
References 478

Index 483