Contents

Pr	Preface				
1	Brain–computer interfaces and electroencephalogram: basics and practical issues <i>Mahnaz Arvaneh and Toshihisa Tanaka</i>			1	
	Abs	tract		1	
	1.1	Introd	uction	1	
	1.2	Core of	components of a BMI system	2	
	1.3	Signal	lacquisition	3	
		1.3.1	Electroencephalography	4	
		1.3.2	Positron emission tomography	4	
		1.3.3	Magnetoencephalography	4	
		1.3.4	Functional magnetic resonance imaging	4	
		1.3.5	Near-infrared spectroscopy	5	
		1.3.6	Commonly used method in BMI—why EEG?	5	
	1.4	Measu	arement of EEG	6	
		1.4.1	Principle of EEG	6	
		1.4.2	How to measure EEG	6	
		1.4.3	Practical issues	7	
	1.5	Neuro	physiological signals in EEG for driving BMIs	9	
		1.5.1	Evoked potentials	9	
			Spontaneous signals	10	
	1.6		nonly used EEG processing methods in BMI	11	
			Preprocessing	11	
			Re-referencing	12	
			Feature extraction	13	
		1.6.4	Classification	14	
		Feedb		14	
	1.8		applications	15	
	1.9		nary	16	
	Refe	16			

2	Discriminative learning of connectivity pattern of motor imagery EEG 23					
	Xinyang Li, Cuntai Guan, and Huijuan Yang					
	Abstract		23			
	2.1 Introdu		23			
		Discriminative learning of connectivity pattern				
		or imagery EEG	26			
		Spatial filter design for variance feature extraction	26			
		Discriminative learning of connectivity pattern	27			
		mental study	28			
		Experimental setup and data processing	28			
		Correlation results	29			
		Classification results	35			
		ns with existing methods	36			
	2.5 Conclu	Ision	36			
	References		37			
3	An experim	ental study to compare CSP and TSM techniques				
	to extract features during motor imagery tasks					
	Matteo Sarte	ori, Simone Fiori, and Toshihisa Tanaka				
	Abstract					
	3.1 Introdu	uction	42			
		tical concepts and methods	44			
		Averaging techniques of SCMs	44			
		SCM averages in CSP and TSM methods	46			
		Multidimensional scaling (MDS) algorithm	47			
	*	mental results	48			
		Classification accuracy	48			
		SCMs distributions on tangent spaces	54			
	3.4 Conclu	isions	58			
	References		58			
4	Robust EEC	G signal processing with signal structures	61			
	Hiroshi Higo	ashi and Toshihisa Tanaka				
	Abstract		61			
	4.1 Introdu		61 63			
	4.2 Source	2 Source analysis				
		4.3 Regularization				
	4.4 Filterin	g in graph spectral domain	67			
	4.4.1	Graph Fourier transform	67			
	4.4.2	Smoothing and dimensionality reduction by GFT	70			
	4.4.3	Tangent space mapping from Riemannian manifold	72			
	4.4.4	Smoothing on functional brain structures	74 76			
	4.5 Conclusion					
	References					

5		eview on transfer learning approaches in brain–compute rface	er 81	
		ied M. Azab, Jake Toth, Lyudmila S. Mihaylova,		
		Mahnaz Arvaneh		
	Abs	tract	81	
		Introduction	81	
		Transfer learning		
	0.2	5.2.1 History of transfer learning	82 82	
		5.2.2 Transfer learning definition	83	
		5.2.3 Transfer learning categories	84	
	5.3	Transfer learning approaches	85	
		5.3.1 Instance-based transfer learning	85	
		5.3.2 Feature-representation transfer learning	85	
		5.3.3 Classifier-based transfer learning	85	
		5.3.4 Relational-based transfer learning	86	
	5.4		86	
		5.4.1 Instance-based transfer learning in BCI	86	
		5.4.2 Feature-representation transfer learning		
		in BCI	88	
		5.4.3 Classifier-based transfer learning in BCI	92	
		5.4.4 Unsupervised transfer learning	96	
	5.5	Challenges and discussion	96	
		5.5.1 Instance-based transfer learning in BCI	96	
		5.5.2 Feature-representation transfer learning in BCI	97	
		5.5.3 Classifier-based transfer learning in BCI	97	
	5.6	Summary	97	
	Refe	erences	98	
6	Uns	upervised learning for brain-computer interfaces based	d on	
		nt-related potentials	103	
	Piet	ter-Jan Kindermans, David Hübner, Thibault Verhoeven,		
	Klat	us-Robert Müller, and Michael Tangermann		
	Abs	tract	103	
		Introduction	102	
		Event-related potential based brain-computer	100	
		interfaces	106	
	6.3	Decoding based on expectation maximisation	107	
		6.3.1 The probabilistic model for ERP BCI	107	
		6.3.2 Training the model	108	
	6.4	Decoding based on learning from label proportions	110	
		6.4.1 Learning from label proportions	110	
		6.4.2 A modified ERP paradigm	111	
		6.4.3 Training of the LLP model	112	
	6.5	Combining EM and LLP decoders analytically	113	
		6.5.1 Training the MIX model	114	

	6.6	Experimental setup	114
		6.6.1 Data	114
		6.6.2 Data processing	115
		6.6.3 Methods and hyperparameters	115
	6.7	Results	116
	6.8	Conclusion	120
	Ack	nowledgements	120
	Refe	erences	121
7	Cov	ariate shift detection-based nonstationary adaptation	
	in n	otor-imagery-based brain–computer interface	125
	Hai	der Raza and Dheeraj Rathee	
	Abs	tract	125
	7.1	Introduction	125
	7.2	Background	127
		7.2.1 Covariate shift in EEG signals	127
		7.2.2 Adaptive learning methods in EEG-based BCI	127
	7.3	Covariate shift detection-based nonstationary adaptation	
		(CSD-NSA) algorithm	129
		7.3.1 Problem formulation	129
		7.3.2 Covariate shift detection (CSD) test	130
		7.3.3 Supervised CSD–NSA algorithm	131
		7.3.4 Unsupervised CSD-NSA algorithm	132
	7.4	Experimental validation of the CSD-NSA algorithms	135
		7.4.1 EEG dataset	135
		7.4.2 Signal processing and feature extraction	135
		7.4.3 Feature selection and parameter estimation	136
		7.4.4 Empirical results	137
		Discussion and future prospects	138
	Refe	erences	139
8		CI challenge for the signal-processing community:	
		sidering the user in the loop	143
		ien Lotte, Camille Jeunet, Jelena Mladenovic,	
	Beri	nard N'Kaoua, and Léa Pillette	
	Abs	tract	143
	8.1	Introduction	144
	8.2	Modeling the user	145
		8.2.1 Estimating and tracking the user's mental states from	
		multimodal sensors	146
		8.2.2 Quantifying users' skills	148
		8.2.3 Creating a dynamic model of the users' states	
		and skills	149

	8.3	Improving BCI user training	155
		8.3.1 Designing features and classifiers that the user can	
		understand and learn from	156
		8.3.2 Identifying when to update classifiers to enhance	
		learning	157
		8.3.3 Designing BCI feedbacks ensuring learning	158
	8.4	Conclusion	163
		lowledgments	164
	Refe	rences	164
9		forward artificial neural networks for event-related	
		ntial detection	173
		ert Cecotti	
	Abst		173
		Introduction	173
	9.2	Event-related potentials	175
	9.3	Feedforward neural networks	176
		9.3.1 Activation functions	177
		9.3.2 Error evaluation	178
		9.3.3 Architectures	178
	9.4	Methods	183
	9.5	Experimental protocol	184
		9.5.1 Conv nets	184
	0.6	9.5.2 Performance evaluation	186
	9.6	Results	186
	9.7	Discussion	188
	9.8	Conclusion	190
	Refe	rences	190
10	_	al models for brain interfaces based on evoked response	
		ntial in EEG	193
	Yeganeh M. Marghi, Paula Gonzalez-Navarro, Fernando Quivira,		
		s McLean, Bruna Girvent, Mohammad Moghadamfalahi,	
	Murc	tt Akcakaya, and Deniz Erdogmus	
	Abst	ract	193
	10.1	ERP-based BCIs	193
		10.1.1 Multidimensional EEG classification	195
		10.1.2 Nonstationarities in EEG signals	195
		10.1.3 Noise in the class labels	196
	10.2	ERP-based inference	197
		10.2.1 ERP detection	197
		10.2.2 Linear model and covariance matrix structures	198
		10.2.3 Nonstationarities detection	203
		10.2.4 Decoupling the class label from ERP detection	205

	10.3	Experii	mental results and discussions	206
		10.3.1	ERP-based BCI typing system	206
		10.3.2	ERP-based BCI with tactile stimuli	210
	10.4	Summa	ary	213
	Refe	rences		214
11	Spat	ial filter	ing techniques for improving individual	
			sed SSVEP detection	219
			nishi, Yijun Wang, and Tzyy-Ping Jung	
	Absti	ract		219
	11.1	Introdu	iction	219
	11.2	Individ	ual template-based SSVEP detection	222
			Basic framework	222
		11.2.2	Ensemble strategy	223
		11.2.3	Filter bank analysis	224
	11.3		-filtering techniques	225
			Average combination	225
		11.3.2	Minimum energy combination	225
			Canonical correlation analysis	228
			Independent component analysis	229
		11.3.5	Task-related component analysis	230
	11.4		al and methods	231
		11.4.1	Dataset	231
		11.4.2	Performance evaluation	232
	11.5	Results	and discussions	233
		11.5.1	Signal features of SSVEPs after spatial filtering	233
		11.5.2	A comparison of frameworks for SSVEP detection	233
			A comparison of electrodes settings	236
		11.5.4	Toward further improvement	238
			Challenges and future direction	238
	11.6	Conclu	-	239
	Refe	rences		239
12	A rev	view of f	eature extraction and classification algorithms	
			SVP-based BCI	243
		0	ng, Graham Healy, Alan F. Smeaton,	
		Tomas E.	· ·	
	Absti	ract		243
	12.1	Introdu	ction	243
	12.2	Overvi	ew of RSVP experiments and EEG data	245
			RSVP experiment for EEG data acquisition	245
		12.2.2	Brief introduction to RSVP-EEG pattern	246

		12.2.3	RSVP-EEG data preprocessing and properties	249
			Performance evaluation metrics	250
	12.3	Feature	e extraction methods used in RSVP-based BCI	
		researc	h	251
		12.3.1	Spatial filtering	251
			Time-frequency representation	256
			Other feature extraction methods	257
			Summary	258
	12.4		of classifiers used in RSVP-based BCI research	258
			Linear classifiers	258
			Neural networks	262
		Conclu		264
		owledgn	nent	265
	Refe	rences		265
13	Deco	ding mu	isic perception and imagination using	
	deep	-learnin	g techniques	271
	Seba.	stian Sto	ber and Avital Sternin	
	Absti	act		271
	13.1	Introdu	action and motivation	271
		13.1.1	Evidence from research on auditory perception	
			and imagination	271
			Existing auditory and music-based BCIs	273
	13.2	Deep le	earning for EEG analysis – the state of the art	274
			Challenges	274
			Deep learning applied to EEG analysis	275
			Custom solutions developed for EEG analysis	276
			The need for open science	277
			Summary	277
	13.3		mental design	278
			Stimulus selection	278
			Equipment and procedure	279
			Preprocessing	281
	13.4	-	entation learning techniques for pre-training	282
			Basic auto-encoder	282
			Cross-trial encoder	285
			Hydra-net cross-trial encoder	286
			Similarity-constraint encoder	286
			Siamese networks and triplet networks	290
			eting trained models	291
		Conclu	sions	293
	Refe	rences		295

14			ck games using EEG-based brain-computer	301	
	interface technology				
	A.P. V	'inod and			
	Abstr	act		301	
	14.1	Introduction		302	
	14.2	Generic framework of a neurofeedback game			
		using B	using BCI technology		
		14.2.1	Data acquisition	303	
		14.2.2	Data processing	304	
		14.2.3	Control signal generation	304	
		14.2.4	Gaming interface	305	
	14.3	Classification of neurofeedback games based on			
		BCI int	305		
		14.3.1	Active BCI games	305	
		14.3.2	Reactive BCI games	310	
		14.3.3	Passive BCI games	314	
		14.3.4	Hybrid games	318	
	14.4 EEG devices for neurofeedback development			319	
	14.5	Benefits of neurofeedback games			
		14.5.1	Novel entertainment modality	320	
		14.5.2	Cognitive enhancement tool in the neurologically		
			challenged as well as healthy	321	
		14.5.3	BCI performance booster	321	
	14.6	Challer	nges in practical implementation	322	
	14.7	Conclu		324	
	References		324		

Index

331