Contents

Preface						
	Acknowledgments List of acronyms Long author biographies					
L	ong a	uthor b	lographies	xix		
1	Introduction					
	1.1	Staten	nent of the problem	1		
	1.2		ture review	3		
		1.2.1	Fault diagnosis			
		1.2.2	Integrated fault detection and control	8		
		1.2.3	Multiagent systems	10		
		1.2.4	Cooperative control and consensus control concepts			
			and notions	13		
		1.2.5	Applications	14		
		1.2.6	Cooperative control	15		
		1.2.7	Formation control	17		
		1.2.8	Flocking/swarming-based approaches	22		
			Consensus algorithms	23		
	1.3	Features and objectives of the book		27		
	1.4	Outline of the book		29		
	1.5	Notations and preliminary lemmas				
2	Inte	grated	fault detection and control design based			
	on d	lynami	c observer	35		
	2.1	Introd	uction	35		
	2.2	The pi	oblem statement and definitions	36		
		2.2.1	System model	36		
		2.2.2	Problem formulation	39		
	2.3	Integr	ated fault detection and control problem	40		
		2.3.1	Residual evaluation criterion	47		
	2.4	Case studies		47		
		2.4.1	Case study 1 (four-tank process)	47		
			Case study 2 [autonomous underwater vehicle (AUV)]	50		
	2.5	Concl		63		

3	A single dynamic observer-based module for design of integrated						
	faul	t detection, isolation, and tracking control scheme	65				
	3.1	Introduction	66				
	3.2	System description and problem formulation	67				
		3.2.1 System description	67				
		3.2.2 Problem formulation	69				
	3.3	Main results	71				
		3.3.1 Residual evaluation criterion	79				
	3.4	A case study: an autonomous underwater vehicle	79				
	3.5	Conclusion	86				
4		grated design of fault detection, isolation, and control					
	for o	continuous-time Markovian jump systems	87				
	4.1	Introduction	87				
	4.2		90				
		4.2.1 System description	90				
		4.2.2 The IFDIC design problem formulation	92				
		Main results	93				
		Case study	100				
	4.5	Conclusion	109				
5	Event-triggered multiobjective control and fault diagnosis:						
	a unified framework						
	5.1	Introduction	112				
		5.1.1 Literature review on event-triggered control	112				
		5.1.2 Literature review on event-triggered fault diagnosis	113				
		5.1.3 Our contributions	113				
	5.2	System description and problem formulation	114				
		5.2.1 System description	114				
		5.2.2 E-IFDIC module and event detector description	115				
		5.2.3 Problem formulation	117				
		Main results	119				
		Two industrial case studies	126				
	5.5	Conclusion	140				
6		nt-triggered fault estimation and accommodation design	141				
	for l	for linear systems					
	6.1	Introduction	141				
	6.2	Problem statement	142				
		6.2.1 System discerption	143				
		6.2.2 Problem definition	143				
		6.2.3 Problem formulation	145				
	6.3	Main results					
	6.4	Case study					
	6.5	Conclusion					

7	Integrated fault detection and consensus control design				
	for a network of multiagent systems				
	7.1	Introd	uction	159	
	7.2	Syster	n description and problem statement	163	
		7.2.1	Multiagent team representation	163	
		7.2.2	Design of the detector/controller units	164	
		7.2.3	Closed-loop team dynamics	165	
			The distributed IFDCC problem definition	166	
	7.3	Distri	buted IFDCC decomposition	167	
		7.3.1	Model transformation	167	
		7.3.2	Model decomposition	169	
	7.4	LMI f	formulation and design for the IFDCC problem	171	
		7.4.1	Residual evaluation criterion	174	
		7.4.2	Distributed fault isolation	175	
	7.5	Case s	study	175	
		7.5.1	Case study 1 (corresponding to Requirement 1)	175	
		7.5.2	Case study 2 (corresponding to Requirement 2)	180	
	7.6	Concl	usion	182	
8	Perspectives and future directions of research				
	8.1	Future	e research directions	183	
		8.1.1	A single dynamic observer-based module for design		
			of integrated fault detection, isolation, and tracking		
			control scheme	184	
		8.1.2	Integrated design of fault detection, isolation,		
			and control for continuous-time Markovian		
			jump systems	185	
		8.1.3	Event-triggered multiobjective control and fault		
			diagnosis: a unified framework	185	
		8.1.4	Event-triggered fault estimation and accommodation		
			design for linear systems	186	
		8.1.5	Integrated fault detection and consensus control design		
			for a network of multiagent systems	186	
		8.1.6	General future directions of research	187	
R	References				
In	Index				