Contents

Foreword Acknowledgments Outlines			xi xiii xv			
1	Introduction					
	1.1	Introduction to embedded system	1 1			
	1.2	Example of embedded system using Athena III PC104	2			
	1.3	Example of embedded systems using ARDUINO [®]	2 3			
	1.4	Example of embedded system using Raspberry Pi	5			
	1.5	Example of embedded system using PIC	7			
	1.6	Motivations	8			
	1.7	Systematic design approach for prototyping embedded systems	10			
	Refe	prences	15			
2	Linux [®] -based embedded system design					
	2.1	Linux [®] operating system	17			
	2.2	Building Linux [®] for embedded systems	20			
		Program layouts in Linux [®]	25			
	2.4	System design and architecture	27			
		2.4.1 Main process design	30			
		2.4.2 Sensor process design	33			
		2.4.3 Sensor fusion thread design	37			
		2.4.4 Control process design	39			
		2.4.5 Actuator driver design	39			
		2.4.6 Network communication thread design	40			
	2.5	Testing of components for control systems	42			
		2.5.1 Inertial measurement unit	42			
		2.5.2 DVL sensor unit	47			
		2.5.3 Image video unit	50			
		2.5.4 Depth sensor unit	56 59			
	2.7	· · F				
	Refe	erences	67			
3		deling and simulation of embedded underwater vehicle system	69			
	3.1					
	3.2	Overview of remotely operated underwater vehicle	69			

	3.3	Dynamics modeling of remotely operated underwater vehicle	71
		3.3.1 Hydrodynamic damping model	73
		3.3.2 Hydrodynamic-added mass model	79
	3.4	Validation of experimental results	84
		3.4.1 Heave model identification	84
		3.4.2 Yaw model identification	88
	3.5	Simulation of remotely operated underwater vehicle model	92
	3.6	Simulating external disturbance for remotely operated	
		underwater vehicle model	97
	3.7	Launch and recovery process model	101
	3.8	Control systems design	102
		3.8.1 Sliding-mode control	104
		3.8.2 Proposed fuzzy-based genetic algorithm for SMC	105
		3.8.3 Proportional-integral-derivative	110
	3.9	Remotely operated underwater vehicle sea trial	117
	Refe	rences	119
4		-Target embedded system design	121
	4.1	Introduction	121
	4.2	Overview of hardware interfacings for simulations testing	123
	4.3	Hardware interfacings	124
	4.4	Hardware-in-the-loop testing using xPC-Target	134
		4.4.1 Create xPC-Target real-time kernel using	10.0
		desktop PC as target PC	136
		4.4.2 Create xPC-Target real-time kernel using	100
		Athena II-PC104 as target PC	139
	4.5	Creating xPC-Target Simulink [®] block diagrams	142
	4.6	Using RS232, analog, and digital I/O in xPC-Target	151
	4.7	Infrared sensor model	158
	4.8	Incremental encoder model	159
		Identification of a servo DC motor	164
		PID speed control of servo DC motor	168
		Sliding-model speed control of servo DC motor	169
		Linear quadratic regulator	171
		Digital speed control of servo DC motor	175
	4.14	Case study: marine robotic vehicle with uncertainties	
		using xPC-Target system	177
		4.14.1 System design and architecture	178
		4.14.2 Underwater robotic vehicle dynamic model	181
		4.14.3 Steady-state thruster's dynamics	183
		4.14.4 Underwater robotic vehicle-horizontal subsystem model	
		4.14.5 Controller design	199
		4.14.6 Implementation and testing	202
	Refe	rences	207

Contents	ix	

5	PIC	embeo	dded system design	211
	5.1	Overv	view of MPLAB IDE	211
	5.2	Intelli	gent vacuum robot system design	212
		5.2.1	System design and architecture	212
		5.2.2	Programming and system implementation	216
		5.2.3	Testing	234
	5.3	Remo	te temperature-sensing system design for patients	235
		5.3.1	System design and architecture	236
		5.3.2	Programming and system implementation	240
		5.3.3	Testing	241
	5.4	Wall-	climbing robot system design	243
		5.4.1	System design and architecture	245
		5.4.2	Programming and system implementation	253
		5.4.3	Testing	259
	5.5	Magn	etic conveyor system design	260
		5.5.1	System design and architecture	261
		5.5.2	Programming and system implementation	274
		5.5.3	Testing	284
	Refe	erences		287
6	AR	DUINC) [®] embedded system design	291
	6.1		tely operated vehicle system design	291
		6.1.1	System design and architecture	291
		6.1.2	Programming and system implementation	303
		6.1.3	Testing	307
	6.2	Smart	t control of marine-tracked vehicle for surveillance	313
		6.2.1	System design and architecture	314
		6.2.2	Programming and system implementation	320
		6.2.3	Testing	325
	6.3	A slot	th bear-inspired pole-climbing robot	327
		6.3.1	System design and architecture	327
		6.3.2	Programming and system implementation	335
		6.3.3	Testing	343
	Refe	erences		344
7	Ras	pberry	Pi-embedded system design	345
	7.1 Fouling detection system			
		7.1.1	System design and architecture	347
		7.1.2	Programming and system implementation	367
		7.1.3	Testing	381
	7.2 Multi-hop microprocessor-based prototype system			
			mote vibration and image monitoring	387
		7.2.1	System design and architecture	388
		7.2.2	Programming and system implementation	394
		7.2.3	Testing	395

x Embedded mechatronics system design for uncertain environments

7.3	Face r	399	
	7.3.1	System design and architecture	399
	7.3.2	Programming and system implementation	399
	7.3.3	GUI using PyQt	419
	7.3.4	Testing	421
Refe	rences		438

Index