Contents

Li	st of	viii xi xii xii			
Li	st of				
Pı	eface				
Ad	knov				
		nowledgments			
1	Intr	oduction	1		
	1.1	Motivation of reset control	1		
	1.2	Basic concepts of RCSs	10		
		1.2.1 Preliminaries and problem setup	10		
		1.2.2 Solutions to RCSs	13		
		1.2.3 RCSs with discrete-time reset conditions	15		
	1.3	Fundamental theory of traditional reset design	17		
		1.3.1 Horowitz's design	17		
		1.3.2 PI+CI reset design	22		
		Notes	24		
		References	24		
2	Des	cribing function analysis of reset systems	27		
-	2.1		27		
		Describing function	32		
	2.2	2.2.1 General case	32		
		2.2.2 Gain-balanced FORE	32		
	23	Application to HDD systems	41		
	2.5	2.3.1 Reset narrow band compensator (RNBC)	41		
		2.3.2 Mid-frequency disturbance compensation	43		
		2.3.3 Simulation results	46		
		Notes	48		
		References	48		
		pility of reset control systems			
3		51			
	3.1	Preliminaries	51		
		3.1.1 Annihilator of matrices	51		
		3.1.2 Passive systems	52		
		Quadratic stability	57		
	3.3	Stability of RCSs with time-delay	63		

		Reset times-dependent stability	67	
	3.5	Passivity of RCSs	77	
		Notes	81	
		References	82	
4	Rob	oust stability of reset control systems	83	
	4.1	Definitions and assumptions	83	
	4.2	Quadratic stability	86	
		4.2.1 RCSs with low-dimensional plants $(n_p \le 2)$	87	
		4.2.2 High-dimensional cases	89	
	4.3	1 2	93	
		Robust stability of RCS with time-delay	96	
	4.5	Examples	106	
		Notes	112	
		References	112	
5	RC	Ss with discrete-time reset conditions	115	
	5.1	Preliminaries and problem setting	116	
	5.2	Stability analysis	118	
		A heuristic design method	122	
	5.4	Application to track-seeking control of HDD systems	125	
		5.4.1 System description	125	
		5.4.2 Baseline controller design	126	
		5.4.3 Reset mode	127	
		5.4.4 Stability analysis	127	
		5.4.5 Simulation results	128	
		Notes	130	
		References	130	
6	Res	Reset control systems with fixed reset instants		
	6.1	Stability analysis	133	
		6.1.1 Stability analysis through induced discrete systems	133	
		6.1.2 Lie-algebraic condition	135	
	6.2	Moving horizon optimization	137	
		6.2.1 Trade-off between stability and other performances	140	
		6.2.2 Observer-based reset control	141	
		Optimal reset law design	142	
		6.3.1 Equivalence between ORL and LQR	144	
		6.3.2 Solutions to ORL problems	147	
	6.4		149	
		6.4.1 Dynamics model of HDD systems	149	
		6.4.2 Moving horizon optimal reset control	150	
	_	6.4.3 Optimal reset control	153	
	6.5	Application to PZT-positioning stage	160	
		6.5.1 Modeling of the PZT-positioning stage	160	

	6.5.2 Reset control design	161
	6.5.3 Experimental results	162
	Notes	166
	References	167
7 Res	et control systems with conic jump sets	169
7.1	Basic idea	169
7.2	<i>L</i> ₂ -gain analysis	172
	7.2.1 Passification via reset	174
	7.2.2 Finite \mathcal{L}_2 gain stability	178
	Notes	180
	References	180
Index		183