Part I Introduction

1 Introduction to model-based Systems Engineering
 1.1 Introduction
 1.2 Understand the concepts and terms that will be used throughout the book
 1.2.1 Systems engineering
 1.2.2 Model-based Systems Engineering
 1.3 Understand why we do what we do and define an approach
 1.4 Understand the concept of the common language
 1.4.1 The spoken language
 1.4.2 The domain-specific language
 1.5 Understand how to apply the approach for specific areas of Systems Engineering
 1.6 Understand how to implement such an approach in real organisations
 1.7 Using this book
References

2 Approach
 2.1 Introduction
 2.1.1 Writing conventions adopted in the book
 2.2 The MBSE Mantra
 2.3 The MBSE fundamentals
 2.4 The MBSE approach
 2.4.1 The ‘MBSE Ontology’
 2.4.2 The ‘MBSE Framework’
 2.4.3 The ‘View’
 2.5 Chapter summary
References

3 MBSE Concepts
 3.1 Introduction
 3.1.1 Provenance of the MBSE Ontology
 3.1.2 The Systems Engineering Body of Knowledge
 3.1.3 Disagreements with the MBSE Ontology
3.2 The MBSE Ontology
 3.2.1 The System concept 36
 3.2.2 The Need concept 42
 3.2.3 The Architecture concept 46
 3.2.4 The ‘Life Cycle’ concept 56
 3.2.5 The Process concept 59
 3.2.6 The Competence concept 63
 3.2.7 The Project concept 69

3.3 Summary
References 74
76

Part II Modelling

4 Introduction to SysML and Systems Modelling
 4.1 Introduction 81
 4.2 Why we model? 81
 4.2.1 The kennel (doghouse) 81
 4.2.2 The house 83
 4.2.3 The office block 84
 4.2.4 The point 86
 4.3 The three evils 87
 4.3.1 Complexity 87
 4.3.2 Lack of understanding 89
 4.3.3 Communication 90
 4.3.4 The vicious triangle 91
 4.4 What is SysML? 91
 4.4.1 SysML’s relationship with UML 91
 4.4.2 A brief history of SysML 92
 4.5 Modelling 93
 4.5.1 Defining modelling 94
 4.5.2 The choice of model 94
 4.5.3 The level of abstraction 95
 4.5.4 Connection to reality 95
 4.5.5 Independent views of the same system 96
 4.6 The SysML diagrams 96
 4.7 Structural modelling 98
 4.7.1 Adding more detail to relationships 103
 4.8 Behavioural modelling 106
 4.8.1 Behavioural modelling – a simple example 108
 4.9 The relationships between behavioural diagrams and structural level 116
 4.10 Identifying complexity through levels of abstraction 121
 4.10.1 The systems 121
 4.10.2 Structural view 121
 4.10.3 Behavioural views 122
 4.11 Chapter summary 127
References 127
5 The SysML Notation 129
 5.1 Introduction 129
 5.1.1 Diagram ordering 129
 5.1.2 The worked example 129
 5.2 The structure of SysML diagrams 130
 5.2.1 Frames 131
 5.3 Stereotypes 131
 5.4 The SysML meta-model 135
 5.5 The SysML diagrams 135
 5.5.1 Block definition diagrams 135
 5.5.2 Internal block diagrams 150
 5.5.3 Package diagrams 164
 5.5.4 Parametric diagrams 169
 5.5.5 Requirement diagrams 180
 5.5.6 State machine diagrams 188
 5.5.7 Sequence diagrams 197
 5.5.8 Activity diagrams 209
 5.5.9 Use case diagrams 220
 5.6 Auxiliary constructs 232
 5.7 Chapter summary 235
References 236

6 Diagramming Guidelines 237
 6.1 Introduction 237
 6.2 Naming conventions 237
 6.2.1 Structural diagrams 237
 6.2.2 Behavioural diagrams 240
 6.2.3 Stereotypes 241
 6.3 Diagram frame labels 241
 6.4 Additional guidelines 245
 6.4.1 Block and internal block diagrams – showing interfaces 245
 6.4.2 Block and internal block diagrams – showing item flows 245
 6.4.3 Activity diagrams 247
 6.4.4 Default tool settings 247
 6.5 Chapter summary 251
Reference 251

Part III Applications 253

7 Process Modelling with MBSE 255
 7.1 Introduction 255
 7.1.1 Background 255
 7.2 Approach 258
 7.2.1 The MBSE Ontology (revisited) 258
 7.2.2 The Framework 258
 7.2.3 The Viewpoints 260
10 Expanded Requirements Modelling – Systems of Systems 403

10.1 Introduction 403
 10.1.1 Background 403
 10.1.2 Defining a System of Systems 406
 10.1.3 Types of Systems of Systems 406

10.2 Approach 408
 10.2.1 The MBSE Ontology (revisited) 408
 10.2.2 The Framework 412
 10.2.3 The Viewpoints 413

10.3 Summary 423

References 423

11 Architectures and Architectural Frameworks with MBSE 425

11.1 Introduction 425
 11.1.1 Background 425

11.2 Approach 428
 11.2.1 The MBSE Ontology (revisited) 428
 11.2.2 The Framework 428
 11.2.3 The Viewpoints 430

11.3 The Framework for Architectural Frameworks 455

11.4 Using the FAF 456

11.5 Chapter Summary 457

References 458

12 Value Chain Modelling 459

12.1 Introduction 459

12.2 Aims of the Value Chain Framework 460

12.3 Main Concepts – the Value Chain Framework’s Ontology 461

12.4 Viewpoints 463
 12.4.1 Engagement Relationship Viewpoint 464
 12.4.2 Engagement Definition Viewpoint 466
 12.4.3 Business Value Viewpoint 469
 12.4.4 Contact Information Viewpoint 471
 12.4.5 Overview of Ontology Elements Covered by the Viewpoints 473

12.5 Rules Governing the use of the Value Chain Framework 476

12.6 Implementation of the Value Chain Framework 477

12.7 Summary 479

Reference 480

Part IV Case Study 481

13 Case Study Introduction and Architectural Framework 483

13.1 Introduction 483
 13.1.1 Background 483

13.2 The MBSE Architectural Framework 484
 13.2.1 The AF Context View 484
13.2.2 The Ontology Definition View
13.2.3 The Viewpoint Relationships View
13.2.4 The Rules Definition View
13.2.5 Viewpoint Definitions

13.3 Defining Viewpoints using SysML Auxiliary Constructs

13.4 Chapter Summary

Reference

14 The Case Study

14.1 Introduction

14.2 The Need Perspective
14.2.1 The Source Element View
14.2.2 The Definition Rule Set View
14.2.3 The Requirement Description View
14.2.4 The Context Definition View
14.2.5 The Requirement Context View
14.2.6 The Validation View
14.2.7 The Traceability View

14.3 The System of Systems Perspective
14.3.1 The Context Interaction View
14.3.2 The Validation Interaction View

14.4 The Life Cycle Perspective
14.4.1 Life Cycle View
14.4.2 The Life Cycle Model View
14.4.3 Interaction Identification View
14.4.4 Interaction Behaviour View

14.5 The Process Perspective
14.5.1 Process Structure View
14.5.2 Requirement Context View
14.5.3 Process Content View
14.5.4 Stakeholder View
14.5.5 Information View
14.5.6 Process Behaviour View
14.5.7 Process Instance View

14.6 The Project Perspective
14.6.1 The Programme Structure View
14.6.2 The Project Schedule View

14.7 The Organisational Perspective
14.7.1 The Organisation Unit Structure View
14.7.2 The Organisation Unit Instance View
14.7.3 The Rank Hierarchy View
14.7.4 The Post Structure View
14.7.5 The Post Instance View
14.7.6 The Post to Role View
14.7.7 The Martian Instance View
17 The ‘Process’

17.1 Introduction

17.2 Defining the Process

17.2.1 The ACRE Process

17.2.2 The ACRE Process – the Process Content View (PCV)

17.3 Using the Process

17.3.1 Example use – quick and dirty Process

17.3.2 Example use – semi-formal Process

17.3.3 Example use – formal Process

17.3.4 Summary of process implementation

17.4 Deploying the Process

17.4.1 ‘Make process available’

17.4.2 ‘Make process accessible’

17.4.3 ‘Ensure awareness of process’

17.4.4 ‘Ensure appropriate presentation’

17.4.5 ‘Ensure value of process’

17.4.6 ‘Provide feedback mechanism’

17.4.7 ‘Ensure consistency’

17.4.8 ‘Contribute to wider initiative’

17.5 Compliance mapping with best practice

17.5.1 Automated compliance

17.6 Summary

References

18 The ‘Tool’

18.1 Introduction

18.2 Considering the types of Tools available

18.2.1 The ‘Individual Tool’

18.2.2 The ‘Tool Chain’

18.2.3 ‘Tool Capability’

18.2.4 Summary

18.3 Understanding the Need for the Tool

18.3.1 Pemberton’s cooking analogy

18.4 Using Tools with existing Processes

18.4.1 Example Tool realisation – quick and dirty Process

18.4.2 Example Tool realisation – semi-formal process
18.4.3 Example Tool realisation – formal Process 670
18.4.4 Guidance for using Tools 674
18.5 Considering Tool selection 675
 18.5.1 ‘Provide modelling capability’ 676
 18.5.2 ‘Ensure compatibility with modelling language’ 676
 18.5.3 ‘Understand operational environment’ 676
 18.5.4 ‘Provide interoperability’ 677
 18.5.5 ‘Ensure vendor’s quality of service’ 677
 18.5.6 ‘Ensure compatibility with the process model’ 678
 18.5.7 ‘Provide capability’ 678
 18.5.8 ‘Provide application functionality’ 679
 18.5.9 ‘Decide on tool’ 679
18.6 Tool evaluation 679
 18.6.1 The MonTE Processes 679
 18.6.2 MonTE – the Process Content View 680
 18.6.3 Information View 681
 18.6.4 Process Instance View 682
18.7 Summary 684

19 Model Structure and Management 685
 19.1 Introduction 685
 19.2 Model structure 685
 19.3 Model management 688
 19.3.1 Version management 688
 19.3.2 Model access 690
 19.3.3 Sandboxing 691
 19.3.4 Correctness through scripting 691
 19.4 Chapter summary 693
Reference 694

20 Model Maturity 695
 20.1 Introduction 695
 20.2 Maturity
 20.2.1 Technology maturity 695
 20.2.2 Process maturity 696
 20.2.3 Individual maturity 697
 20.3 Modelling for TRLs 697
 20.4 Readiness levels for models 699
 20.5 Assessment approach 702
 20.6 Applying Model Maturity 703
 20.7 Conclusions 704
References 704
<table>
<thead>
<tr>
<th>Part</th>
<th>Annex</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Ontology and Glossary</td>
<td>707</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Summary of SysML Notation</td>
<td>715</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Process Model for ISO15288:2015</td>
<td>747</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Competency Framework</td>
<td>787</td>
</tr>
<tr>
<td>Appendix E</td>
<td>The MBSE Memory Palace</td>
<td>839</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>843</td>
</tr>
</tbody>
</table>