Contents

Fo Pr	Foreword Preface		xvii xix xxi xxi	
PA			1	
1	Intro	oductio	on to SDN	3
	Rusle	an L. Si	melyanskiy and Alexander Shalimov	
	1.1	Data c	enters	3
		1.1.1	The new computing paradigm	3
			DC network architecture	5
			Traffic in DC	5
			Addressing and routing in DC	7
			Performance	8
			TCP/IP stack issues	10
			Network management system	11
			Virtualization, scalability, flexibility	12
	1.2		are-defined networks	13
		1.2.1	How can we split control plane and data plane?	13
			OpenFlow protocol and programmable switching: basics	16
			SDN controller, northbound API, controller applications	19
		1.2.4	- F	22
	1.3		ary and conclusion	22
	Refe	rences		23
2		-	mentations and protocols	27
			rnandez Benet, Kyoomars Alizadeh Noghani, and Javid Taheri	
	2.1		SDN is implemented	28
			Implementation aspects	28
			Existing SDN controllers	29
	2.2		nt SDN implementation using OpenDaylight	30
			OpenDaylight	30
	2.3		iew of OpenFlow devices	33
		2.3.1	Software switches	34
		2.3.2	Hardware switches	35

	2.4	SDN protocols	36
		2.4.1 ForCES	36
		2.4.2 OpenFlow	37
		2.4.3 Open vSwitch database management (OVSDB)	41
		2.4.4 OpenFlow configuration and management protocol	
		(OF-CONFIG)	42
		2.4.5 Network configuration protocol (NETCONF)	43
	2.5	Open issues and challenges	44
	2.6	Summary and Conclusions	45
	Refe	prences	46
3	SDN	components and OpenFlow	49
		iao Li, Dafang Zhang, Javid Taheri, and Keqin Li	
		Overview of SDN's architecture and main components	49
		3.1.1 Comparison of IP and SDN in architectures	50
		3.1.2 SDN's main components	51
	3.2	OpenFlow	52
		3.2.1 Fundamental abstraction and basic concepts	52
		3.2.2 OpenFlow tables and the forwarding pipeline	54
		3.2.3 OpenFlow channels and the communication mechanism	55
	3.3	-	57
		3.3.1 System architectural overview	57
		3.3.2 System implementation overview	59
		3.3.3 Rule placement and optimization	60
	3.4	OpenFlow switches	60
		3.4.1 The detailed working flow	60
		3.4.2 Design and optimization of table lookups	62
		3.4.3 Switch designs and implementations	63
	3.5	Open issues in SDN	65
		3.5.1 Resilient communication	65
		3.5.2 Scalability	65
	Refe	prences	66
4	SDN	for cloud data centres	69
	Dim	itrios Pezaros, Richard Cziva, and Simon Jouet	
	4.1	Overview	69
	4.2	Cloud data centre topologies	70
		4.2.1 Conventional architectures	70
		4.2.2 Clos/Fat-Tree architectures	71
		4.2.3 Server-centric architectures	73
		4.2.4 Management network	75
	4.3	Software-defined networks for cloud data centres	76
		4.3.1 Challenges in cloud DC networks	76
		4.3.2 Benefits of using SDN in cloud DCs	77

		4.3.3	Current SDN deployments in cloud DC	79
		4.3.4	SDN as the backbone for a converged resource control	
			plane	80
	4.4		issues and challenges	82
			Network function virtualisation and SDN in DCs	82
		4.4.2	The future of network programmability	83
	4.5	Summ		85
			gements	85
	Refe	erences		86
5			on to big data	91
		-	berah and Fatemeh Rahimian	
	5.1		ta platforms: challenges and requirements	91
	5.2		o store big data?	93
			Distributed file systems	94
			Messaging systems	95
	5 2		NoSQL databases	96
	5.3		o process big data? Batch data processing platforms	99 99
			Streaming data processing platforms	102
			Graph data processing platforms	102
		5.3.4	· · · ·	110
	5.4		uding remarks	111
		erences	g	112
6	Big	Data p	rocessing using Apache Spark and Hadoop	115
			uhata and Satoshi Matsuoka	
	6.1	Introd	uction	115
	6.2		ata processing	117
		6.2.1	Big Data processing models	118
			Big Data processing implementations	119
			MapReduce-based Big Data processing implementations	120
			Computing platforms for Big Data processing	122
	6.3		e Hadoop	123
			Overview of Hadoop	123
			Hadoop MapReduce	124
			Hadoop distributed file system	125
			YARN	126
			Hadoop libraries	127
			Research activities on Hadoop	128
	6.4	-	e Spark	129
		6.4.1	Overview of Spark	129
		0.4.2	Resilient distributed dataset	129

		6.4.3	Spark libraries	130
		6.4.4	Using both Spark and Hadoop cooperatively	131
		6.4.5	Research activities on Spark	132
	6.5	Open	issues and challenges	132
		6.5.1	Storage	132
		6.5.2	Computation	133
		6.5.3	Network	134
		6.5.4	Data analysis	135
	6.6	Summ	ary	136
	Refe	erences		136
7	Big	Data st	ream processing	139
	Yida	n Wang,	M. Reza HoseinyFarahabady, Zahir Tari,	
	and	Albert	Y. Zomaya	
	7.1	Introd	uction to stream processing	139
		7.1.1	Background and motivation	139
		7.1.2	Streamlined data processing framework	140
		7.1.3	Stream processing systems	141
	7.2		e storm [8, 9]	143
			Reading path	143
			Storm structure and composing components	143
			Data stream and topology	144
			Parallelism of topology	145
			Grouping strategies	146
			Reliable message processing	147
	7.3		uling and resource allocation in Apache Storm	148
			Scheduling and resource allocation in cloud [4–7]	148
			Scheduling of Apache Storm [8, 9]	149
		7.3.3	e	150
	7.4	-	y-of-service-aware scheduling	151
			Performance metrics [16]	151
			Model predictive control-based scheduling	152
		7.4.3	Experimental performance analysis	153
	7.5	-	issues in stream processing	155
	7.6	Concl		156
		nowled	gement	156
	Refe	erences		157
8	0		cloud data centers	159
			n Manogaran and Daphne Lopez	
	8.1		uction	159
	8.2		for the architecture patterns and data sources for Big Data	
		storag	e in cloud data centers	160

	8.3	Applic	ations of Big Data analytics with cloud data centers	162
		8.3.1	Disease diagnosis	162
		8.3.2	Government organizations	163
		8.3.3	Social networking	163
		8.3.4	Computing platforms	163
		8.3.5	Environmental and natural resources	163
	8.4	State-o	f-the-art Big Data architectures for cloud data centers	163
		8.4.1	Lambda architecture	164
		8.4.2	NIST Big Data Reference Architecture (NBDRA)	166
		8.4.3	Big Data Architecture for Remote Sensing	167
		8.4.4	The Service-On Line-Index-Data (SOLID) architecture	169
		8.4.5	Semantic-based Architecture for Heterogeneous	
			Multimedia Retrieval	170
			LargeScale Security Monitoring Architecture	171
			Modular software architecture	172
		8.4.8	MongoDB-based Healthcare Data Management	
			Architecture	173
		8.4.9	Scalable and Distributed Architecture for Sensor Data	
			Collection, Storage and Analysis	174
			Distributed parallel architecture for "Big Data"	176
	8.5		nges and potential solutions for Big Data analytics in cloud	
		data ce		177
	8.6	Conclu	ision	180
	Refe	erences		181
PA	RT I	I How	y SDN helps Big Data	183
9			volume in Big Data	185
	Kyoo	omars Al	lizadeh Noghani, Cristian Hernandez Benet,	
		Javid To		
			ta volume and SDN	186
	9.2		rk monitoring and volume	187
		9.2.1	Legacy traffic monitoring solutions	188
	~ •	9.2.2	Ð	189
	9.3		engineering and volume	191
			Flow scheduling	192
			TCP incast	196
			Dynamically change network configuration	197
	9.4		plerant and volume	198
	9.5	Open i		201
			Scalability	202
			Resiliency and reliability	202
	ъć	9.5.3	Conclusion	202
	Kefe	erences		203

10	SDN helps velocity in Big Data	207
	Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo,	
	and Javid Taheri	
	10.1 Introduction	208
	10.1.1 Big Data velocity	208
	10.1.2 Type of processing	208
	10.2 How SDN can help velocity?	211
	10.3 Improving batch processing performance with SDN	212
	10.3.1 FlowComb	212
	10.3.2 Pythia	213
	10.3.3 Bandwidth-aware scheduler	214
	10.3.4 Phurti	215
	10.3.5 Cormorant	216
	10.3.6 SDN-based Hadoop for social TV analytics	217
	10.4 Improving real-time and stream processing performance	
	with SDN	218
	10.4.1 Firebird	218
	10.4.2 Storm-based NIDS	219
	10.4.3 Crosslayer scheduler	220
	10.5 Summary	221
	10.5.1 Comparison table	221
	10.5.2 Generic SDN-based Big Data processing framework	221
	10.6 Open issues and research directions	223
	10.7 Conclusion	225
	References	225
11	SDN helps value in Big Data	229
	Harald Gjermundrød	
	11.1 Private centralized infrastructure	232
	11.1.1 Adaptable network platform	232
	11.1.2 Adaptable data flows and application deployment	233
	11.1.3 Value of dark data	233
	11.1.4 New market for the cloud provider	235
	11.2 Private distributed infrastructure	236
	11.2.1 Adaptable resource allocation	236
	11.2.2 Value of dark data	238
	11.3 Public centralized infrastructure	238
	11.3.1 Adaptable data flows and programmable network	238
	11.3.2 Usage of dark data	240
	11.3.3 Data market	240
	11.4 Public distributed infrastructure	242
	11.4.1 Usage of dark data	242
	11.4.2 Data market	243
	11.4.3 Data as a service	247

	11.5 Open issues and challenges	247
	11.6 Chapter summary	249
	References	249
12	SDN helps other Vs in Big Data	253
	Pradeeban Kathiravelu and Luís Veiga	
	12.1 Introduction to other Vs in Big Data	254
	12.1.1 Variety in Big Data	254
	12.1.2 Volatility in Big Data	255
	12.1.3 Validity and veracity in Big Data	256
	12.1.4 Visibility in Big Data	256
	12.2 SDN for other Vs of Big Data	257
	12.2.1 SDN for variety of data	258
	12.2.2 SDN for volatility of data	259
	12.2.3 SDN for validity and veracity of data	261
	12.2.4 SDN for visibility of data	262
	12.2.5 More Vs into Big Data	263
	12.3 SDN for Big Data diversity	264
	12.3.1 Use cases for SDN in heterogeneous Big Data	264
	12.3.2 Architectures for variety and quality of data	265
	12.3.3 QoS-aware Big Data applications	266
	12.3.4 Multitenant SDN and data isolation	267
	12.4 Open issues and challenges	268
	12.4.1 Scaling Big Data with SDN	268
	12.4.2 Scaling Big Data beyond data centers	270
	12.5 Summary and conclusion	270
	References	271
13	SDN helps Big Data to optimize storage	275
	Ali R. Butt, Ali Anwar, and Yue Cheng	
	13.1 Software defined key-value storage systems for datacenter	
	applications	275
	13.2 Related work, features, and shortcomings	276
	13.2.1 Shortcomings	277
	13.3 SDN-based efficient data management	280
	13.4 Rules of thumb of storage deployment in software	
	defined datacenters	281
	13.4.1 Summary of rules-of-thumb	285
	13.5 Experimental analysis	286
	13.5.1 Evaluating data management framework in software	
	defined datacenter environment	286
	13.5.2 Evaluating micro-object-store architecture in software	
	defined datacenter environment	289

	13.6 Open issue and future directions in SDN-enabled	
	Big Data management	292
	13.6.1 Open issues in data management framework in software	
	defined datacenter	292
	13.6.2 Open issues in micro-object-store architecture in software	
	defined datacenter environment	293
	13.7 Summary	294
	References	294
14	SDN helps Big Data to optimize access to data	297
	Yuankun Fu and Fengguang Song	
	14.1 Introduction	297
	14.2 State of the art and related work	299
	14.3 Performance analysis of message passing and parallel	
	file system I/O	300
	14.4 Analytical modeling-based end-to-end time optimization	302
	14.4.1 The problem	302
	14.4.2 The traditional method	303
	14.4.3 Improved version of the traditional method	303
	14.4.4 The fully asynchronous pipeline method	304
	14.4.5 Microbenchmark for the analytical model	305
	14.5 Design and implementation of DataBroker for the fully	
	asynchronous method	309
	14.6 Experiments with synthetic and real applications	310
	14.6.1 Synthetic and real-world applications	310
	14.6.2 Accuracy of the analytical model	311
	14.6.3 Performance speedup	312
	14.7 Open issues and challenges	314
	14.8 Conclusion	315
	Acknowledgments	315
	References	315
15	SDN helps Big Data to become fault tolerant	319
	Abdelmounaam Rezgui, Kyoomars Alizadeh Noghani, Javid Taheri,	
	Amir Mirzaeinia, Hamdy Soliman, and Nickolas Davis	
	15.1 Big Data workloads and cloud data centers	320
	15.2 Network architectures for cloud data centers	321
	15.2.1 Switch-centric data centers	321
	15.2.2 Server-centric data centers	321
	15.3 Fault-tolerant principles	324
	15.4 Traditional approaches to fault tolerance in data centers	325
	15.4.1 Reactive approaches	326
	15.4.2 Proactive approaches	327
	15.4.3 Problems with legacy fault-tolerant solutions	327

15.5 Fault tolerance in SDN-based data centers	328
15.5.1 Failure detection in SDN	329
15.5.2 Failure recovery in SDN	329
15.6 Reactive fault-tolerant approach in SDN	330
15.7 Proactive fault-tolerant approach in SDN	330
15.7.1 Failure prediction in cloud data centers	332
15.7.2 Traffic patterns of Big Data workloads	332
15.8 Open issues and challenges	333
15.8.1 Problems with SDN-based fault-tolerant methods	333
15.8.2 Fault tolerance in the control plane	334
15.9 Summary and conclusion	334
References	334
PART III How Big Data helps SDN	337
16 How Big Data helps SDN with data protection and privacy <i>Lothar Fritsch</i>	339
16.1 Collection and processing of data to improve performance	339
16.1.1 The promise of Big Data in SDN: data collection, and	
configuration change	339
16.2 Data protection requirements and their implications for Big	
in SDN	340
16.2.1 Data protection requirements in Europe	340
16.2.2 Personal data in networking information	343
16.2.3 Issues with Big Data processing	344
16.3 Recommendations for privacy design in SDN Big Data proj	ects 344
16.3.1 Storage concepts	345
16.3.2 Filtration, anonymization and data minimization	345
16.3.3 Privacy-friendly data mining	346
16.3.4 Purpose-binding and obligations management	346
16.3.5 Data subject consent management techniques	347
16.3.6 Algorithmic accountability concepts	347
16.3.7 Open issues for protecting privacy using	
Big Data and SDN	349
16.4 Conclusion	350
Acknowledgment	350
References	350
17 Big Data helps SDN to detect intrusions and secure data flows	s 353
Li-Chun Wang and Yu-Jia Chen	
17.1 Introduction	353
17.2 Security issues of SDN	354
17.2.1 Security issues in control channel	354
17.2.2 Denial-of-service (DoS) attacks	354

	17.2.	3 Simulation of control channel attack on SDN	357
	17.3 Big I	Data techniques for security threats in SDN	359
	17.3.	1 Big Data analytics	360
		2 Data analytics for threat detection	361
		consideration in SDN with security services	361
		1 Delay guarantee for security traversal	361
		2 Traffic load balancing	365
		Data applications for securing SDN	368
		1 Packet inspection	368
		issues and challenge	371
		nary and conclusion	371
	References		372
18		elps SDN to manage traffic	375
		ng and Qiang Duan	
	Abstract		375
	18.1 Intro		375
		of art of traffic management in IP and SDN networks	377
	18.2.	1 General concept and procedure of network traffic	
		management	377
		2 Traffic management in IP networks	378
		3 Traffic management in SDN networks	379
		tial benefits for traffic management in SDN using Big Data	201
	techn	1	381
		1 Big Data in SDN networks	381
		2 How Big Data analytics could help SDN networks	382 382
		mework for Big Data-based SDN traffic management ble Big Data applications for SDN traffic analysis	382
		ontrol	384
		1 Big graph data analysis for SDN traffic analysis and	304
	10.5.	long-term network topology improvement	384
	18.5	2 Streaming-based Big Data analysis for real-time SDN	504
	10.5.	traffic analysis and adaptation	384
	18 5	3 Big Data mining for SDN network control	501
	10.5.	and adaptation	385
	18.6 Open	issues and challenges	385
		1 Data acquisition measurement and overhead	385
		2 SDN controller management	386
		3 New system architecture for Big Data-based traffic	•
		management in SDN	386
	18.7 Conc		386
	References	5	387

19	Big Data helps SDN to optimize its controllers	389
	Daewoong Cho, Saeed Bastani, Javid Taheri, and Albert Y. Zomaya	
	19.1 Introduction	389
	19.2 What is a SDN controller?	390
	19.3 SDN controller-related issues	391
	19.3.1 Scalability	391
	19.3.2 Resiliency	392
	19.3.3 Solutions	393
	19.4 Big Data for SDN controller optimization	394
	19.4.1 System architecture	395
	19.4.2 Big Data analytics techniques	395
	19.4.3 Problem formulation	396
	19.4.4 Optimization algorithm	398
	19.4.5 Applicable scenarios	399
	19.5 Open issues and challenges	404
	19.6 Conclusion	405
	References	405
20	Big Data helps SDN to verify integrity of control/data planes	409
	Qingsong Wen, Ren Chen, Yinglong Xia, Li Zhou, Juan Deng, Jian Xu,	
	and Mingzhen Xia	
	20.1 Introduction	409
	20.2 Related work	410
	20.3 Finding top- <i>K</i> shortest simple paths	410
	20.3.1 MPS algorithm for top K shortest simple paths	411
	20.3.2 Improved MPS algorithm with efficient implementation	413
	20.4 Routing check and detection	416
	20.4.1 Subnet partition	417
	20.4.2 Loop detection	418
	20.4.3 Black hole detection	418
	20.4.4 Reachability detection	419
	20.5 Efficient graph engine	419
	20.5.1 Edge-set representation	420
	20.5.2 Consolidation	421
	20.5.3 Multimodal organization	423
	20.5.4 Scheduling and prefetching	423
	20.6 Experiments	423
	20.6.1 Performance evaluation of finding top-K shortest	
	simple paths	423
	20.6.2 Performance evaluation of the efficient graph engines	426
	20.7 Open issues and challenges	428
	20.8 Conclusions	429
	References	429

21	Big Data helps SDN to improve application specific	
	quality of service	433
	Susanna Schwarzmann, Andreas Blenk, Ognjen Dobrijevic,	
	Michael Jarschel, Andreas Hotho, Thomas Zinner, and Florian Wamser	
	21.1 Introduction	433
	21.2 Classification of SDN-based context-aware	
	networking approaches	434
	21.2.1 Monitoring of QoE influence factors (QoE-IFs)	435
	21.2.2 Control actions of management approaches	436
	21.2.3 Potential of Big Data for SDN QoE management	437
	21.3 Big Data analytics to support QoS/QoE management	438
	21.3.1 Big Data analytics	438
	21.3.2 Current and ongoing work	440
	21.4 Combining Big Data analytics and SDN: three use cases to	
	improve QoS/QoE	442
	21.4.1 Use case 1: improving the operation of networks	442
	21.4.2 Use case 2: improving the quality of video-on-demand	
	streaming based on business agreements	444
	21.4.3 Use case 3: improving the quality of applications without	
	business agreements	445
	21.5 Vision: intelligent network-wide auto-optimization	446
	21.6 Challenges and discussions	449
	21.6.1 Challenges of SDN-based QoE management	449
	21.6.2 Challenges of a Big Data-supported SDN architecture for	
	enhancing application quality	450
	21.7 Conclusion	452
	Acknowledgments	452
	References	453
In	dex	457