Contents

Acknowledgments xiii
Glossary and acronym expansions xv

1 Introduction 1
1.1 About this book 1
1.1.1 The enterprise approach 1
1.1.2 User stories 2
1.2 What is trusted computing? 2
1.2.1 What do we mean by ‘trusted’? 3
1.2.2 A brief history of trusted computing 4
1.2.3 The Trusted Computing Group 4
1.3 TPMs at a high level 5
1.3.1 Roots of Trust 5
1.3.2 Chains of trust 7
1.3.3 The TPM threat model 7
1.3.4 What TPMs are good for 9
1.3.5 What TPMs aren’t good for 9
1.3.6 TPM versions 10
1.3.7 Common TPM myths 11
1.4 Where to find TPMs 14
1.5 TPM software options 15

2 When to use a TPM 17
2.1 Machine authentication examples 17
2.2 Data protection examples 18
2.3 Attestation examples 19
2.4 When not to use a TPM 20
2.4.1 When not to use: consumer DRM 20
2.4.2 When not to use: primary defence against physical threats 21
2.5 Complicating factors 21
2.5.1 Identifying TPMs 21
2.5.2 Enterprise PKI integration 22
2.5.3 Universal software support 23
3 TPM concepts and functionality

3.1 Ownership and authority

3.2 Root keys and primary seeds
3.2.1 TPM 1.2 root keys
3.2.2 TPM 2.0 primary seeds and hierarchies

3.3 Non-root keys
3.3.1 Root and non-root key relationships
3.3.2 Externally created keys and the TPM

3.4 Key certification

3.5 Roots of trust for measurement

3.6 Platform configuration registers

3.7 Quotes

3.8 NVRAM and key storage

3.9 Utility functions

3.10 Access control mechanisms

3.11 Cryptographic algorithms

3.12 Communicating securely with the TPM

3.13 The TPM in action
3.13.1 Possible TPM states
3.13.2 Reboots, and why they matter
3.13.3 Clearing: erasing your TPM

4 Programming introduction

4.1 TSS 1.2 code introduction
4.1.1 Categories of TSPI commands
4.1.2 TSS objects
4.1.3 Policies: providing passwords to the TPM
4.1.4 Object attributes

4.2 IBM TSS 2.0 code introduction
4.2.1 TPM 2.0 utilities sample code
4.2.2 File handling helper functions

5 Provisioning: getting the TPM ready to use

5.1 Provisioning: what it means, and why it matters

5.2 Basic steps of 1.2 TPM provisioning
5.2.1 Setting up a 1.2 TPM
5.2.2 Establishing trust in a 1.2 TPM

5.3 2.0 TPM provisioning and hierarchies
5.3.1 Changing hierarchy authorizations
5.3.2 Changing the hierarchy seeds
5.3.3 Creating primary keys and objects

5.4 Multiversion TPMS

5.5 TPM provisioning user stories
5.5.1 User stories: turning the TPM on
5.5.2 User stories: establishing trust in the TPM
5.5.3 User stories: taking ownership
6.16 TSS 2.0 key management code examples 125
 6.16.1 Key creation 125
 6.16.2 Key loading 128
 6.16.3 Using public keys 129
 6.16.4 Enhanced Authorization policies 130

7 Machine authentication 137
 7.1 What is machine authentication? 137
 7.1.1 Signing versus encryption 137
 7.1.2 The limits of TPM-based machine authentication 138
 7.1.3 What about user authentication? 138
 7.2 Signing-based machine authentication 139
 7.2.1 How it works 139
 7.2.2 When to use it 140
 7.2.3 The TPM and signing-based authentication 141
 7.2.4 Nonces: why they matter and how to use them 144
 7.2.5 Mitigating man-in-the-middle attacks 146
 7.3 Encryption-based machine authentication 147
 7.3.1 How it works 147
 7.3.2 When to use it 149
 7.4 User identification versus machine authentication 150
 7.5 Machine authentication user stories 151
 7.6 1.2 TSS machine authentication code examples 153
 7.6.1 Setting a signature scheme 153
 7.6.2 Signing and verifying hashed data 154
 7.6.3 Encryption and decryption 154
 7.7 TSS 2.0 machine authentication code examples 154
 7.7.1 Signing 154
 7.7.2 Verifying signatures 156
 7.7.3 Encryption and decryption 157

8 Data protection 159
 8.1 The pros and cons of TPMs for data storage 159
 8.2 Basic TPM encryption features 161
 8.2.1 Storage hierarchies and data protection 162
 8.3 Disk encryption, bulk data protection, and secure backups 163
 8.4 Small-scale data protection 163
 8.4.1 Small-scale local encryption 164
 8.5 Secure data transmission 166
 8.5.1 Binding, legacy keys, and backwards compatibility 168
 8.6 Alternate backup techniques 168
 8.7 The TPM’s internal storage (NVRAM) 168
 8.7.1 Using NVRAM in 1.2 170
 8.7.2 Using NVRAM in 2.0 171
8.8 Conditional data access 175
8.9 Data protection user stories 176
8.10 TSS 1.2 data protection code examples 179
 8.10.1 Binding and unbinding 179
 8.10.2 Sealing and unsealing 180
 8.10.3 Using NVRAM 181
8.11 TSS 2.0 data protection code examples 184
 8.11.1 Creating a sealed blob 184
 8.11.2 Decrypting a sealed blob 186
 8.11.3 Using NV storage 186
 8.11.4 Reading NV contents and manufacturer certificates 190

9 Attestation 193
 9.1 Machine state and the TPM 193
 9.1.1 Measurement chains of trust 193
 9.1.2 The Static Root of Trust for Measurement 194
 9.1.3 The Dynamic Root of Trust for Measurement 195
 9.2 Using the PCRs 200
 9.2.1 Essential PCR operations 200
 9.2.2 Measurement and PCRs 202
 9.2.3 Beyond measurements: creative uses of PCRs 204
 9.2.4 1.2 PCR design 206
 9.2.5 2.0 PCR design 207
 9.2.6 Choosing PCRs to use 209
 9.2.7 PCRs beyond the PC 210
 9.3 Basic attestation techniques 211
 9.3.1 Quotes 211
 9.3.2 Verifying quotes 214
 9.3.3 Constrained key attestation 216
 9.3.4 Direct anonymous attestation 216
 9.4 Machine state measurement in theory and reality 221
 9.5 Attestation user stories 221
 9.6 TSS 1.2 attestation code examples 225
 9.6.1 Reading PCR contents 225
 9.6.2 Extending PCRs 225
 9.6.3 Resetting PCRs 226
 9.6.4 Creating and verifying a quote 227
 9.7 TSS 2.0 attestation code examples 232
 9.7.1 Creating a PCR selection 232
 9.7.2 Reading PCR contents 233
 9.7.3 Extending PCRs 233
 9.7.4 Resetting PCRs 234
 9.7.5 Creating and verifying quotes 235
10 Other TPM features

10.1 The smorgasbord
10.2 Clearing the TPM
 10.2.1 Revoking trust in an EK
 10.2.2 Clearing user stories
10.3 Random number generation
 10.3.1 Random number user stories
10.4 TPM configuration
 10.4.1 Configuration in 1.2
 10.4.2 Configuration in 2.0
 10.4.3 Configuration user stories
10.5 Monotonic counters
 10.5.1 Monotonic counter user stories
10.6 Storing extra keys in the TPM
 10.6.1 Persistent key user stories
10.7 Command auditing
 10.7.1 Command audit user stories
10.8 Field upgrades
10.9 1.2-exclusive features
 10.9.1 Temporarily deactivating the TPM
 10.9.2 Maintenance archives
 10.9.3 Delegation
 10.9.4 Tickstamps
10.10 2.0-exclusive features
 10.10.1 Cryptographic primitives
 10.10.2 Clocks and attesting to local time

11 Software, specifications, and more: Where to find other TPM resources

11.1 1.2 Programming tools
 11.1.1 1.2 Trusted/TCG software stacks (TSS)
 11.1.2 Microsoft’s TBS
11.2 2.0 Programming tools
 11.2.1 IBM TSS 2.0
 11.2.2 2.0 TSS.Net and TSS.C++
11.3 Books, courses, and other digested material
 11.3.1 TPM 1.2 concepts
 11.3.2 TPM 1.2 programming
 11.3.3 TPM 2.0
 11.3.4 Other trusted computing topics
11.4 Community
 11.4.1 The TCG
 11.4.2 TrouSerS-users mailing list
11.5 1.2 Specifications 274
 11.5.1 1.2 TSS specification 274
 11.5.2 1.2 TPM specification 276
11.6 2.0 Specifications 279
 11.6.1 TCG TSS (TPM Software Stack) specifications 279
 11.6.2 2.0 TPM specifications 281
 11.6.3 2.0 Supporting specifications 283
11.7 Platform specifications 285
 11.7.1 1.2 Platform specifications 285
 11.7.2 2.0 Platform specification 286
 11.7.3 Specifications applying to multiple TPM versions 286
11.8 Other useful resources 286
 11.8.1 The tpm-tools package 286
 11.8.2 TPM manufacturers 287
 11.8.3 TPM 2.0 simulators 287
 11.8.4 Example open-source applications 288
 11.8.5 Useful trusted computing tools 289
11.9 Commercial software 289

12 Troubleshooting 291
 12.1 When all else fails 291
 12.2 There’s no TPM in the BIOS menu 291
 12.3 Trouble getting any software working 292
 12.3.1 Linux-specific tips 292
 12.4 TPM returning errors 292
 12.5 TSS 1.2 code returning errors 293
 12.6 Problems using TPM data structures 294

13 Conclusion and review 295
 13.1 What the TPM is good for 295
 13.2 Common TPM use cases 295
 13.3 The potential (and peril) of the future 296
 13.4 In conclusion 296

Appendix A Basic cryptographic concepts 299
 A.1 The limitations of this appendix 299
 A.2 Basic vocabulary 299
 A.3 Symmetric cryptography 299
 A.4 Asymmetric (public key) cryptography 300
 A.5 Key derivation functions 301
 A.6 Hashes 301
 A.6.1 HMACs 301
 A.7 Nonces 302
 A.8 Zero-knowledge proofs 302
Appendix B Command equivalence and requirements charts 305
 B.1 Key 305
 B.2 TPM 1.2 command equivalence and requirements 306
 B.3 TPM 2.0 command requirements 312

Appendix C Complete code samples 317
 C.1 1.2 TSS code samples 317
 C.1.1 Sealing and unsealing 317
 C.1.2 Using NVRAM 321
 C.2 2.0 TSS code samples 324
 C.2.1 Creating objects 324
 C.2.2 Retrieving the TPM’s internal time 342

Copyright Notices 351

Index 353