Contents

Authors’ biographies ix
Preface xi
List of symbols xiii

1 Introduction 1
1.1 Introduction 1
1.2 Voltage regulator applications 3
1.3 Voltage source gate driver and high-frequency-dependent loss 4
 1.3.1 Switching loss 5
 1.3.2 Body diode conduction loss 9
 1.3.3 Reverse recovery loss 10
 1.3.4 Gate drive loss 10
1.4 Summary 10
References 11

2 Fundamentals of current source driver 13
2.1 Resonant gate drivers 13
2.2 Concept of current source driver 17
2.3 A practical and accurate switching loss model 19
 2.3.1 Introduction 19
 2.3.2 Impact of parasitic inductance and load current 20
 2.3.3 Proposed switching loss model 24
 2.3.4 Turn-on switching loss model 25
 2.3.5 Turn-off switching loss model 32
 2.3.6 Voltage source drive model verification 37
 2.3.7 Experimental validation of the voltage source drive model 38
2.4 Summary 42
References 42

3 Continuous current source driver 45
3.1 Two-channel low-side continuous current source drivers 45
 3.1.1 Operating principle 45
 3.1.2 Loss comparison 49
 3.1.3 Advantages of the proposed current source driver 52
 3.1.4 Applications 54
 3.1.5 Experimental results 56
3.2 High-side and low-side continuous current source drivers 59
 3.2.1 Operating principle of proposed current source drivers 59
 3.2.2 Advantages 63
 3.2.3 Loss analysis 65
 3.2.4 Experimental results 67
3.3 Accurate switching loss model with current source drivers 69
 3.3.1 Proposed MOSFET loss model with current source resonant driver 69
 3.3.2 Analytical modeling and simulation results 73
 3.3.3 Proposed optimal design with the accurate switching loss model 75
 3.3.4 Experimental verification and discussion 79
3.4 High-side and low-side current source drivers 86
 3.4.1 Problem of high-side and low-side current source drivers 86
 3.4.2 Proposed decoupled high-side and low-side current source drivers 87
 3.4.3 New current-source gate driver with integrated magnetics 94
 3.4.4 Experimental results and discussion 96
3.5 Summary 101
References 101

4 Discontinuous current source drivers 103
 4.1 Discontinuous current source driver 103
 4.1.1 Proposed low-side discontinuous CSD 103
 4.1.2 Driver loss analysis 107
 4.1.3 CSD design procedure 115
 4.1.4 Design example 116
 4.1.5 Experimental results 117
 4.2 High-side discontinuous CSD 123
 4.2.1 Proposed CSD for synchronous buck converter and operation 123
 4.2.2 Design example 125
 4.2.3 Experimental results 125
 4.3 Discontinuous CSD with reduced inductance 132
 4.3.1 Proposed CSD and principle of operation 132
 4.3.2 Proposed high-side CSD and hybrid gate-drive scheme 137
 4.3.3 Experimental results 139
 4.4 Current diversion 145
 4.4.1 Introduction 145
 4.4.2 Proposed switching loss model considering current diversion 147
 4.4.3 Experimental results and discussions 154
 4.5 Summary 157
References 158
5 Adaptive current source drivers

5.1 Adaptive current source driver for buck converters
5.1.1 Introduction
5.1.2 Adaptive continuous current source driver
5.1.3 Adaptive discontinuous current source drivers
5.1.4 Implementation of the adaptive drive voltage for the current source drivers
5.1.5 Experimental results and discussion

5.2 Adaptive current source driver for power factor correction application
5.2.1 Introduction
5.2.2 Analysis of current source driver circuits and proposed adaptive current source driver for boost power factor correction converters
5.2.3 Loss analysis of proposed adaptive current source driver for boost power factor correction converter
5.2.4 Experimental results and discussion

5.3 Digital adaptive power factor correction
5.3.1 Introduction
5.3.2 Principle of the proposed digital adaptive discontinuous current source driver
5.3.3 Design procedure and implementation
5.3.4 Experimental results and discussion

5.4 Summary

References

6 Resonant gate drivers

6.1 Resonant gate drivers for multi-megahertz isolated resonant converters
6.1.1 Introduction
6.1.2 Challenges for the SR drive in the multi-MHz isolated resonant converters
6.1.3 Proposed self-driven RGD for the SR
6.1.4 Experimental verification and discussion

6.2 A high-frequency dual-channel isolated resonant gate driver with low gate-drive loss for ZVS full-bridge converters
6.2.1 Introduction
6.2.2 Review of gate-drive circuits
6.2.3 Proposed resonant gate driver for FB converters and principle of operation
6.2.4 Loss analysis and optimal design
6.2.5 The comparison between the proposed RGD and previous gate-drive circuits
6.2.6 Experimental results and discussion

6.3 Summary

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>eGaN HEMTs gate drivers</td>
<td>231</td>
</tr>
<tr>
<td>7.1</td>
<td>Three-level gate drivers</td>
<td>231</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Driving requirements for eGaN HEMTs in resonant SEPIC converters</td>
<td>232</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Proposed three-level gate drivers for eGaN HEMTs</td>
<td>235</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Operation principle of three-level gate driver</td>
<td>237</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Rectifier mathematic modeling and design</td>
<td>241</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Experimental results and discussion</td>
<td>248</td>
</tr>
<tr>
<td>7.2</td>
<td>A digital adaptive driving scheme for eGaN HEMTs in VHF converters</td>
<td>252</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Introduction</td>
<td>252</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Gate-drive challenges for eGaN VHF converters</td>
<td>254</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Proposed digital adaptive driving scheme</td>
<td>256</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Relationship analysis between gate-drive timing and input voltage</td>
<td>258</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Air-core transformer design</td>
<td>263</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Experimental results and discussion</td>
<td>264</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>270</td>
</tr>
</tbody>
</table>

Index 273