4.3 Theoretical analysis of memristive astable multivibrator 56
 4.3.1 Discharging interval 57
 4.3.2 Charging interval 58
4.4 Simulation validation for memristive astable multivibrator 59
 4.4.1 Testing the memristor emulator 59
 4.4.2 Observing the oscillation of memristive astable multivibrator 60
4.5 Memcapacitor-based astable oscillator circuit 63
4.6 Simulation validation for memcapacitive astable multivibrator 65
4.7 Conclusion 68
References 68

5 Piecewise-constant oscillators and their applications 73
 Tadashi Tsubone, Keisuke Suzuki and Takahiro Aoki
 5.1 Basic concept of piecewise-constant oscillations 73
 5.2 Example 1: a piecewise-constant chaotic spiking oscillator 78
 5.2.1 Circuit and dynamics 79
 5.2.2 Embedded return map 80
 5.3 Example 2: coupled systems of piecewise-constant oscillators 82
 5.3.1 A piecewise-constant oscillator exhibiting limit cycle 82
 5.3.2 Coupled system of piecewise-constant oscillators 85
 5.3.3 Analysis of PWC oscillators 88
 5.4 Conclusions 90
References 91

6 Master–slave synchronization of hysteresis neural-type oscillators 93
 Kenya Jin’no, Takuya Kurihara and Toshimichi Saito
 6.1 Introduction 93
 6.2 Relaxation oscillator with a time-variant threshold 94
 6.2.1 Periodic fluctuation threshold 94
 6.2.2 Period adjustment capability 96
 6.3 The response to non-periodic external force 97
 6.3.1 Without external force 99
 6.3.2 Periodic external force 101
 6.3.3 Uniform random period external force 104
 6.4 Conclusions 107
References 107

7 Multimode oscillations in coupled hard oscillators 109
 Kuniyasu Shimizu and Tetsuro Endo
 7.1 Introduction 109
 7.2 Two inductor-coupled hard oscillators 111
 7.2.1 Weakly nonlinear oscillators 111
 7.2.2 Strongly nonlinear oscillators 121
 7.3 Propagating waves in a coupled hard-oscillator ring 126
 7.4 Conclusions 130
References 131
8 Wave propagation of phase difference in coupled oscillator arrays 133
Masayuki Yamauchi, Yoshihito Todani and Syohei Fujimoto

8.1 Introduction 133
8.2 Circuit model 134
8.3 Phase-inversion waves 138
 8.3.1 Basic synchronization phenomena 138
 8.3.2 Sample of phase-inversion waves 139
 8.3.3 Characteristics of the phase-inversion waves 145
 8.3.4 Propagation velocity of phase-inversion waves 146
 8.3.5 Mechanisms 146
8.4 Conclusion 161
Acknowledgment 161
References 161

9 Coupled oscillator networks with frustration 163
Yoko Uwate and Yoshifumi Nishio

9.1 Introduction 163
9.2 Frustration in ring van der Pol oscillators with different frequencies 165
 9.2.1 Circuit model 165
 9.2.2 Synchronization phenomena 166
9.3 Frustration in coupled polygonal oscillatory networks 169
 9.3.1 Weakly coupled oscillators 169
 9.3.2 Strongly coupled oscillators 176
9.4 Conclusions 179
References 180

10 Graph comparison and synchronization in complex networks 183
Hui Liu, Ming Cao and Chai Wah Wu

10.1 Introduction 183
10.2 Network model and preliminaries 185
10.3 Tools of graph comparison 187
10.4 Synchronization in an undirected network 188
 10.4.1 Graph comparison with the complete graph 188
 10.4.2 Graph comparison with the star graph 190
 10.4.3 Illustrative examples 192
10.5 Synchronization in a directed network 196
 10.5.1 Graph comparison with the complete graph 196
 10.5.2 Illustrative examples 200
10.6 Conclusions 203
Acknowledgments 203
Appendix A: Comments on Assumption 10.1 203
Appendix B: Numerical simulation 205
References 206
11 Experimental studies on reconfigurable networks of chaotic oscillators

Massimiliano de Magistris, Carlo Petrarca and Soudeh Yaghouti

11.1 Introduction 209
11.2 Realization of a network of nonlinear oscillators with linear coupling
 11.2.1 Designing a reconfigurable complex network of nonlinear oscillators 211
 11.2.2 Chua’s circuits as system nodes 213
 11.2.3 A reconfigurable linear N-pole as interconnection network 213
 11.2.4 The actual system implementation 215
11.3 Collective behaviours and relative analysis tools 217
 11.3.1 Synchronization 217
 11.3.2 Clustering 220
11.4 Experimental results and validation of theoretical predictions
 11.4.1 Experiments on synchronization with diffusive links 221
 11.4.2 Experiments on synchronization with dynamic links 223
 11.4.3 Experiments on clustering 225
 11.4.4 Observation of patterns and waves 231
11.5 Concluding remarks 236
References 241

12 Fundamental operation and design of high-frequency high-efficiency tuned power oscillator

Hiroo Sekiya

12.1 Introduction 245
12.2 Power amplifiers
 12.2.1 Class-D amplifier 247
 12.2.2 Class-E amplifier 250
 12.2.3 Driver circuit 251
12.3 Tuned power oscillator
 12.3.1 Free-running class-E oscillator 252
 12.3.2 Injection-locked class-E oscillator 254
 12.3.3 Class-E_M oscillator with second harmonic injection 255
12.4 Design of free-running class-E oscillator 256
 12.4.1 Design strategies 256
 12.4.2 Numerical design procedure 257
 12.4.3 Design examples and experimental measurements 260
12.5 Conclusion 263
References 264
13 Ring oscillators and self-timed rings in true random number generators 267
Viktor Fischer, Patrick Haddad and Abdelkarim Cherkaoui

13.1 Introduction 267
13.2 Design of TRNGs 268
13.3 Electric noise and clock jitter as a source of randomness 269
 13.3.1 Electric noise in clock generators 269
 13.3.2 Jitter of the generated clock signal 270
13.4 Harvesting the entropy from jittery clock signals 275
13.5 Single-event ring oscillators as sources of jittery clocks 276
 13.5.1 Modelling the jitter of clocks generated in ring oscillators 278
13.6 Multi-event ring oscillators with signal collisions 279
 13.6.1 Modelling number of oscillations in TERO 280
13.7 STR oscillators 281
 13.7.1 Clock jitter in STRs 284
13.8 Examples of oscillator-based TRNGs 285
 13.8.1 Elementary ring oscillator-based TRNG 285
 13.8.2 Multiple ring oscillator-based TRNG 286
 13.8.3 TERO-based TRNG 287
 13.8.4 STR-based TRNG 288
13.9 Conclusions 290
References 290

14 Attacking on-chip oscillators in cryptographic applications 293
Lilian Bossuet, Pierre Bayon and Viktor Fischer

14.1 Introduction 293
14.2 Background 294
 14.2.1 TRNG model and implementation 294
14.3 Figures 295
 14.3.1 Attack scenario 296
14.4 Retrieving information on the RO-TRNG: passive electromagnetic attack 297
 14.4.1 Electromagnetic analysis platform 297
 14.4.2 Frequency analysis 298
 14.4.3 Differential frequency analysis 299
 14.4.4 Experiments 300
 14.4.5 Experimental results 301
14.5 Modifying the RO-TRNG behavior: active electromagnetic attack 304
 14.5.1 Injection platform 304
 14.5.2 Experiments 306
 14.5.3 Attack description 307
14.5.4 Effect of the electromagnetic waves on the ROs—Target #1 308
14.5.5 Effect of the electromagnetic waves on the TRNG—Target #2 311
14.5.6 Discussion 314
14.6 Conclusion 315
References 315
Index 319