Contents

Ab	out t	he auth	ors	XV	
Ac	Acknowledgments Foreword by Thomas M. Coughlin				
Fo					
Fo	rewoi	d by P	radipta Patra	xxi	
Fo	rewoi	rd by S	warup Bhunia	xxiii	
Fo	Foreword by Peter Corcoran Preface x				
Lis	st of a	cronyn	18	xxxi	
		otation		xxxvii	
1	Intr	oductio	on to IP core protection and hardware-assisted		
			consumer electronics	1	
	1.1	Consu	mer electronics and security perspectives	1	
	1.2	Hardw	vare-assisted security and IP core protection	3	
	1.3	Intelle	ctual property (IP) cores/hardware	4	
		1.3.1	Utility of IP cores in CE devices	4	
		1.3.2	Why security and protection of hardware/IP cores?	5	
		1.3.3	Traditional forms of IP protection not enough?	6	
	1.4	IP cor	e protection and hardware-assisted security of		
		CE de	vice—DSP core	6	
		1.4.1	Security and protection methodologies available		
			for IP core/hardware	7	
		1.4.2	Different IP core protection and hardware-assisted security		
			mechanisms: advantages and disadvantages	12	
		1.4.3	HLS (architectural synthesis) as design backbone for		
			implementing security algorithms for DSP IP cores	13	
	1.5		vare-assisted media protection	15	
	1.6	•	al unclonable functions	16	
	1.7		ization of the book	17	
	1.8	Conclu		19	
		Exerci	ses	19	
	Refe	rences		20	
2		•	consumer electronics and internet of things (IoT)	23	
	2.1		et of things (IoT) – a broad overview	23	
			IoT – architecture	25	
		2.1.2	IoT – driving technology	27	

		2.1.3	IoT – applications	28
			IoT – challenges	30
	2.2	Securi	ty, privacy, IPR in IoT, and consumer	
		electro	onic systems – a big picture	31
			IoT security – attacks and countermeasures	32
		2.2.2	Trustworthy consumer electronic systems	34
		2.2.3	Hardware-assisted security and protection	35
		2.2.4	Different aspects of security and privacy	37
		2.2.5	Different aspects of intellectual property (IP),	
			ownership right, or copyright protection	38
	2.3		bry security	39
		2.3.1	Memory security attacks	39
		2.3.2	Memory security solutions	40
	2.4		-frequency identification (RFID) security	43
		2.4.1	RFID security attacks	43
		2.4.2	RFID security solutions	44
	2.5		field communications (NFC) security	46
			NFC security attacks	47
			NFC security solutions	48
	2.6		transportation security	50
			Smart car security	51
			UAV or drone security	55
	2.7		healthcare security	58
			Smart healthcare security attacks	59
		2.7.2	Smart healthcare security solutions	60
	2.8	Firmw		62
			Firmware attacks	62
	•		Firmware solutions	63
	2.9		chain technology	64
			Blockchain – overview	65
			Blockchain – application	66
			Blockchain as a security framework	67
	a 10		Blockchain – issues	68
		Concl		69
		Exerci	ISES	69
	Refe	rences		70
3	Troj	an sec	urity aware DSP IP core and integrated circuits	79
	3.1		uction	79
	3.2	• •	of hardware Trojans	81
		3.2.1	Trojan features	81
		3.2.2	Benefit of Trojan security at higher abstraction level	84
	_	3.2.3	Threat model	85
	3.3		vare Trojan in a 3PIP module	86
		3.3.1	Example of a hardware Trojan	86
		3.3.2	Trojan detectability in a 3PIP module at RTL/lower levels	87

	3.4	Select	ed Trojan security approaches	88
		3.4.1	Trojan security approaches for DSP cores	88
		3.4.2	Trojan security approach for combinational/sequential circuits	94
	3.5	Trojan	a security aware DSP IP core	95
		3.5.1	Definition	96
		3.5.2	Goal	96
		3.5.3	Formulation	97
		3.5.4	Models	97
	3.6	Design	n process of Trojan secured DSP IP core	99
			Deriving the CDFG of a DSP core	99
		3.6.2	Generating the DMR of the CDFG	108
		3.6.3	Trojan secured scheduling of DMR CDFG	108
	3.7	Analy	sis of case studies/test cases	113
			DSP applications and system setup for the case studies	113
			Security analysis	114
			Design cost analysis	115
			Comparative perspectives	116
	3.8	Conclu		117
	3.9	Exerci		118
		rences		119
4	IP c	ore and	d integrated circuit protection using robust watermarking	123
	4.1	Introd		123
	4.2	Select	ed watermarking approaches	124
	4.3		n process of watermarked IP core/hardware	128
			Problem formulation	128
		4.3.2	Design process of single-phase watermarked	
			IP core/hardware	129
		4.3.3	Design process of triple-phase watermarked	
			IP core/hardware	148
		4.3.4	Desired properties of IP core watermark	161
		4.3.5	Possible cases of dishonest claim of IP core/hardware	
			ownership and its resolution	162
	4.4	Analy	sis on case studies	163
		4.4.1		163
		4.4.2	Design cost analysis of triple-phase watermark	
			for DSP IP cores	164
	4.5	Conclu		166
	4.6			168
	Refe	rences		169
5	Sym	metric	al protection of DSP IP core and integrated circuits	
	•		rprinting and watermarking	171
	usin	g nnge	i pi inting and water marking	1/1
	usin 5.1	Introd		171

		5.1.2	Threat model	173
		5.1.3	Benefits of protection at higher abstraction	173
	5.2	Funda	mentals of IP core protection	174
		5.2.1	Overview on non-symmetric IP core protection techniques	174
		5.2.2	Overview on symmetric IP core protection techniques	175
	5.3	Symm	netrical IP core protection for DSP core	175
		5.3.1	Problem formulation	177
		5.3.2	Symmetrically protected design-area evaluation model	177
		5.3.3	Symmetrically protected design-delay evaluation model	177
		5.3.4	Symmetrically protected design—cost evaluation	
			function	177
		5.3.5	Encoding rules of buyer fingerprint and seller	
			watermark for DSP IP cores	178
		5.3.6	Multi-variable signature embedding process	180
		5.3.7	Signature detection process	181
		5.3.8	Desirable properties of signature	182
	5.4		study of symmetrical IP core protection	182
		5.4.1	Demonstration of fingerprinting constraints embedding	
			process	183
		5.4.2	Demonstration of watermarking constraints embedding	
			process	186
	5.5	Analy	sis of case studies for DSP cores	187
		5.5.1	Analysis of embedding cost, security metric	
			on DSP Cores symmetrical protection	188
		5.5.2	Comparative study between symmetrical	
			and non-symmetrical technique	190
	5.6	Concl		194
	5.7		ises	194
	Refe	erences		195
~	C		10	
6			onal forensic engineering for resolving	100
			conflict of DSP IP core uction	199
	6.1			199
	60		Overview of forensic engineering	200 202
	6.2	-	utational FE technology	202
	6.3		e feature extraction algorithms Feature extraction rules	204
			IP core validation	204
			Important characteristics of customized CFE	213
	6.4	6.3.3	sis on case studies	214
	0.4	6.4.1		214
	6.5	Concl	**	213
	6.6	Exerci		222
		rences		223
	1.010			J

7	Stru	ictural	obfuscation of DSP cores used in CE devices	227
	7.1	Introd	luction	227
		7.1.1	Threat model	230
		7.1.2	Benefits of providing security at higher design	
			abstraction level	230
	7.2	Obfus	scation for IP core protection—a broad view	231
			Code obfuscation techniques	231
		7.2.2	Logic obfuscation techniques	231
		7.2.3	Structural obfuscation techniques	232
	7.3	Comp	biler transformation-driven structural obfuscation	233
		7.3.1	Formulation and evaluation models	235
		7.3.2	Multistage high-level transformation techniques	236
	7.4	Low-o	cost structural obfuscation for DSP IP core	242
		7.4.1	Overview on PSO	242
		7.4.2	Movement of particle	242
		7.4.3	Terminating condition of PSO	243
	7.5	A case	e study for multistage structural obfuscation	243
	7.6		vsis of case studies	246
		7.6.1	Result of multistage structural obfuscation	246
		7.6.2	Comparative study and discussion	248
	7.7	Concl	usion	250
	7.8	Exerc	ises	251
	Refe	erences		251
8	Fun	ctional	obfuscation of DSP cores used in CE devices	255
Ū	8.1		luction	255
	8.2	Attacl	k scenarios and threat model	256
			Possible attack scenarios	256
			Threat model	259
	8.3		ted functional obfuscation approaches	260
	8.4		n of functionally obfuscated DSP core	262
		-	Formulation	262
		8.4.2	Low-cost obfuscation method for DSP core	262
	8.5		ity of functionally obfuscated DSP core design	266
			Keyspace	266
			Security analysis	267
			Countermeasures against attacks	267
	8.6		nization engine for functional obfuscation	
			P cores	273
		8.6.1	Particle encoding	273
		8.6.2	Particle fitness	273
		8.6.3	Updating particle	274
	8.7		vsis of case studies	275
		8.7.1	Security analysis	275
		8.7.2	Overhead analysis	277

		8.7.3	Comparative analysis	279
	8.8	Concl	usion	282
	8.9	Exerci	ises	283
	Refe	rences		283
9	Obf	uscatio	n of JPEG CODEC IP core for CE devices	287
	9.1	Introd		287
	9.2	Overv	iew of JPEG compression and decompression	289
			DCT-based JPEG image compression process	290
		9.2.2	DCT-based JPEG image decompression process	293
	9.3	Design	n process of structurally obfuscated JPEG IP core	293
		9.3.1	Threat model, problem formulation, and optimization	
			framework	293
		9.3.2	Constructing non-obfuscated DFG for	
			JPEG compression	294
		9.3.3	Generating structurally obfuscated JPEG	
			compression IP core	296
		9.3.4	Generating structurally obfuscated JPEG	
			decompression IP core	298
	9.4	Imple	mentation of JPEG CODEC IP core	299
		9.4.1	Designing obfuscated JPEG compression IP core	299
		9.4.2	Designing obfuscated JPEG decompression IP core	302
		9.4.3	End-to-end JPEG CODEC through designed	
			hardware/IP core	302
	9.5	Analy	sis on case studies	308
	9.6	Concl	usion	312
	9.7	Exerci	ises	312
	Refe	rences		313
10	Adv	anced	encryption standard (AES) and its hardware	
	wate	ermark	ing for ownership protection	317
	10.1	Intro	duction	317
	10.2	AES	algorithm	318
		10.2.	1 Overview of AES	318
		10.2.	2 AES algorithm—description and custom	
			hardware design	318
	10.3	AES	digital watermarking	326
		10.3.	1 AES watermark encoding	327
		10.3.	-	329
		10.3.	•	329
	10.4		study of a watermarked AES hardware	330
	10.5		lusion	330
	10.6		cises	334
	Refe	rences		334

11	Hard	lware ap	proaches for media and information	
	protection and authentication			337
	11.1	IP Prote	ection—a broad overview	337
		11.1.1	Digital rights management	338
		11.1.2	Copyright protection of multimedia—a brief history	339
		11.1.3	Hardware versus media protection	342
	11.2	General	framework for copyright protection	343
		11.2.1	The encoder	343
		11.2.2	The decoder	344
		11.2.3	The comparator	344
	11.3	Types of	of digital watermarks	344
		11.3.1	Spatial versus frequency domain watermarking	345
		11.3.2	Based on multimedia objects	345
		11.3.3	Based on human perception	346
		11.3.4	From applications point of view	346
		11.3.5	Based on embedding techniques	347
		11.3.6	Hardware-based watermarking systems	347
	11.4	Applica	tions of digital watermarks	347
		11.4.1	Copyright protection	347
		11.4.2	Ownership assertion	348
		11.4.3	Authentication and integrity verification	348
			Fingerprinting	348
			Usage control	348
			Broadcast monitoring	348
			Content labeling	349
			Misappropriation detection	349
			Anti-counterfeiting	349
			UAV safety	349
			Medical signals authentication	350
	11.5		characteristics of watermarks	350
			Perceptibility	350
			Robustness	350
			Tamper resistance	351
			Bit rate	351
		11.5.5	Modifiability, multiplicity, cascadability,	
			and orthogonality	351
		11.5.6	Scalability	351
		11.5.7	Unambiguity and universality	352
		11.5.8	Pixel alteration and human intervention	352
		11.5.9	Reliability	352
			Blindness	352
			Security	353
			Real-time operation	353
			Cost and complexity	353
		11.5.14	Energy consumption	353

		11.5.15 Integrability	354
		11.5.16 Characteristics specific to a watermark	354
	11.6	Technical challenges for watermarking	355
		11.6.1 Properties of visual signals	356
		11.6.2 Properties of the human visual system	357
		11.6.3 How much watermark signal to add and where?	357
		11.6.4 Spread spectrum communications	358
	11.7	Hardware-based approaches for watermarking	358
		11.7.1 Image watermarking hardware systems	359
		11.7.2 Video watermarking hardware systems	372
		11.7.3 Secure better portable graphics (SBPG)	378
		11.7.4 Trust cam	379
	11.8	Dynamic watermarking in smart car or UAV	381
		Medical signals authentication	382
	11.10	Side-channel information leakage attacks and countermeasures	383
		11.10.1 An encryption hardware	383
		11.10.2 Side-channel analysis attacks	384
		11.10.3 Side-channel attack countermeasures	387
	11.11	Attacks on watermarks and watermarking systems	388
		11.11.1 Removal and interference attacks	389
		11.11.2 Geometric attacks	389
		11.11.3 Cryptographic attacks	389
		11.11.4 Protocol attacks	389
	11.12	Limitations of watermarks and watermarking	390
		Conclusion	391
		Exercises	391
	Refere	ences	392
12		cal unclonable functions (PUFs)	403
		Introduction	403
		PUF: Principle	406
	12.3	Properties or characteristics of PUFs	407
		12.3.1 Uniqueness	407
		12.3.2 Reliability (correctness)	409
		12.3.3 Randomness (uniformity)	409
		12.3.4 Correlation (bit aliasing)	409
		12.3.5 Power consumption	410
		12.3.6 Speed	410
	12.4	Classification of PUFs	410
		12.4.1 Device-based PUFs	411
		12.4.2 Security-based PUFs	411
	12.5	Ring oscillator-based PUFs	412
	12.6	Reconfigurable or dynamic PUFs	415
	12.7	SRAM-based PUF	419
	12.8	Memristor-based PUFs	420

12.9 Diode-based PUF	424
12.10 Carbon-based PUFs	426
12.10.1 CNT-based PUF	427
12.10.2 Graphene-based PUF	428
12.11 Microprocessor-based PUF	429
12.12 Magnetic PUF	430
12.13 Practical implementation of PUF	432
12.14 PUF: case study applications	433
12.15 PUF: issues	438
12.16 Conclusion	440
12.17 Exercises	440
References	441
Appendix A	447
Appendix B	459

dex

493